[Germination et croissance des nanotubes monofeuillets : études par microscopie électronique en transmission du rôle du catalyseur]
This paper reviews transmission electron microscopy studies, combining high resolution imaging and electron energy loss spectroscopy, of the nucleation and growth of carbon single wall nanotubes with a particular emphasis on the nanotubes obtained from the evaporation-based elaboration techniques. Inspection of samples obtained from different synthesis routes shows that in all cases nanotubes are found to emerge from catalyst particles and that they have grown perpendicular or parallel to the surface according to whether they have been synthesized via evaporation-based methods or CCVD methods. Whereas the latter case corresponds to the well-known situation of carbon filaments growth, the former case strongly suggests another formation and growth process, which is described and its different steps discussed in detail. In this model, formation of the nanotubes proceeds via solvation of carbon into liquid metal droplets, followed by precipitation, at the surface of the particles, of excess carbon in the form of nanotubes through a nucleation and root growth process. It is argued that the nucleation of the nanotubes, which compete with the formation of graphene sheets wrapping the surface of the particle, necessarily results from a surface instability induced by the conditions of segregation. The nature and the origin of this instability was studied in the case of the class of catalyst Ni–R.E. (R.E.=Y, La, Ce, …) in order to identify the influence of the nature of the catalyst. The respective roles played by Ni and R.E. have been identified. It is shown that carbon and rear-earth co-segregate and self-assemble at the surface of the particle in order to form a surface layer destabilizing the formation of graphene sheets and providing nucleation sites for nanotubes growing perpendicular to the surface.
Cet article présente une revue des études, par microscopie électronique en transmission, couplant imagerie de haute résolution et spectroscopie de pertes d'énergie d'électrons, de la germination et de la croissance des nanotubes de carbone simple feuillet, avec un développement particulier pour les tubes obtenus par les techniques de synthèse mettant en jeu la vaporisation d'une cible. L'examen d'échantillons provenant de différentes voies de synthèse montre que, dans tous les cas, les nanotubes émergent de particules catalytiques et qu'ils ont crû perpendiculairement ou parallèlement à la surface selon qu'ils ont été synthétisés par des méthodes mettant en jeu la vaporisation d'une cible ou des méthodes de type CCVD. Alors que le dernier cas correspond à la situation bien connue de la croissance des filaments de carbone, le premier cas suggère fortement un autre procédé de formation et de croissance, qui est décrit et ces différentes étapes discutées en détail. Dans ce modèle, la formation des tubes s'effectue par dissolution de carbone dans des gouttes de métal liquide, suivie de la précipitation, à la surface des particules, du carbone en excès sous la forme de nanotubes par un mécanisme de nucléation et de croissance par le pied. Il est démontré que la nucléation des nanotubes, qui est en compétition avec la formation de feuillets de graphène couvrant la surface de la particule, provient nécessairement d'une instabilité de surface induite par les conditions de ségrégation. La nature et l'origine de cette instabilité a été étudiée dans le cas de la classe de catalyseurs Ni–R.E. (R.E.=Y, La, Ce…) afin d'identifier l'influence de la nature du catalyseur. Les rôles respectifs joués par le Ni et la terre rare ont été identifiés. Il est montré que le carbone et la terre rare co-ségrègent et s'auto-assemblent à la surface de la particule de façon à former une couche de surface qui déstabilise la formation de feuillets de graphène et qui est source de sites de nucléation pour des nanotubes croissant perpendiculairement à la surface.
Annick Loiseau 1 ; Julie Gavillet 1 ; François Ducastelle 1 ; Jany Thibault 2 ; Odile Stéphan 3 ; Patrick Bernier 4 ; Saı̈d Thair 4
@article{CRPHYS_2003__4_9_975_0, author = {Annick Loiseau and Julie Gavillet and Fran\c{c}ois Ducastelle and Jany Thibault and Odile St\'ephan and Patrick Bernier and Sa{\i}\ensuremath{\ddot{}}d Thair}, title = {Nucleation and growth of {SWNT:} {TEM} studies of the role of the catalyst}, journal = {Comptes Rendus. Physique}, pages = {975--991}, publisher = {Elsevier}, volume = {4}, number = {9}, year = {2003}, doi = {10.1016/j.crhy.2003.10.022}, language = {en}, }
TY - JOUR AU - Annick Loiseau AU - Julie Gavillet AU - François Ducastelle AU - Jany Thibault AU - Odile Stéphan AU - Patrick Bernier AU - Saı̈d Thair TI - Nucleation and growth of SWNT: TEM studies of the role of the catalyst JO - Comptes Rendus. Physique PY - 2003 SP - 975 EP - 991 VL - 4 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2003.10.022 LA - en ID - CRPHYS_2003__4_9_975_0 ER -
%0 Journal Article %A Annick Loiseau %A Julie Gavillet %A François Ducastelle %A Jany Thibault %A Odile Stéphan %A Patrick Bernier %A Saı̈d Thair %T Nucleation and growth of SWNT: TEM studies of the role of the catalyst %J Comptes Rendus. Physique %D 2003 %P 975-991 %V 4 %N 9 %I Elsevier %R 10.1016/j.crhy.2003.10.022 %G en %F CRPHYS_2003__4_9_975_0
Annick Loiseau; Julie Gavillet; François Ducastelle; Jany Thibault; Odile Stéphan; Patrick Bernier; Saı̈d Thair. Nucleation and growth of SWNT: TEM studies of the role of the catalyst. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 975-991. doi : 10.1016/j.crhy.2003.10.022. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.10.022/
[1] Nature, 388 (1997), p. 756
[2] Science, 273 (1996), p. 483
[3] Appl. Phys. A, 292 (1998), p. 587
[4] Appl. Phys. A, 36 (1998), p. 685
[5] Chem. Phys. Lett., 260 (1996), p. 471
[6] Appl. Phys. Lett., 72 (1998), p. 3282
[7] Chem. Phys. Lett., 14 (1999), p. 1343
[8] Carbon, 40 (2002), p. 1649
[9] Carbon, 40 (2002), p. 1635
[10] Appl. Phys. A, 70 (2000), p. 125
[11] Appl. Phys. A, 70 (2000), p. 153
[12] Phys. Rev. B, 65 (2002), p. 245425
[13] Appl. Phys. A, 103 (1999) no. 1, p. 4346
[14] N. Dorval, A. Foutel-Richard, M. Cau, A. Loiseau, B. Attal-Trétout, J.L. Cochon, D. Pigache, P. Bouchardy, V. Krüger, K.P. Geigle, J. Nanosc. Nanotech. (2003), in press
[15] Phys. Rev. B, 11 (1999), p. 180
[16] Phys. Rev. B, 64 (2001), p. 235401
[17] Carbon, 40 (2002), p. 113
[18] Phys. Rev. B, 55 (1997), p. 6097
[19] Phys. Rev. Lett., 87 (2001), p. 275504
[20] J.-Ch. Charlier, G.-M. Rignanese, X. Blasé, De Vita, R. Car (2003), unpublished
[21] J. Gavillet, J. Thibault, O. Stéphan, H. Amara, A. Loiseau, Ch. Bichara, J.-P. Gaspard, F. Ducastelle, J. Nanosc. and Nanotech. (2003), in press
[22] Appl. Surface Sci., 164 (2000), p. 227
[23] Electronic Properties of Novel Materials Science and Technology of Molecular Nanostructures (H. Kuzmany; J. Fink; M. Mehring; S. Roth, eds.), American Institute of Physics, 1999, p. 237
[24] Electronic Properties of Novel Materials Science and Technology of Molecular Nanostructures (H. Kuzmany; J. Fink; M. Mehring; S. Roth, eds.), American Institute of Physics, 2002, p. 385
[25] Chem. Phys. Lett., 91 (1999), p. 313
[26] Carbon, 99 (1995), p. 16076
[27] Appl. Phys. Lett., 65 (1994), p. 1593
[28] Phys. Rev. Lett., 90 (2003), p. 145501
[29] Carbon, 27 (1989), p. 315
[30] J. Cryst. Growth, 32 (1976), p. 335
[31] J. Cryst. Growth, 66 (1984), p. 632
[32] Phys. Rev. Lett., 85 (2000), p. 3193
[33] Carbon, 38 (2000), p. 1691
[34] Appl. Phys. Lett., 4 (1964), p. 89
[35] Binary of Phase Alloys Diagrams (T.B. Massalski, ed.), ASM International, 1990
[36] Appl. Phys. A, 103 (1999), p. 4346
[37] Carbon, 40 (2002), p. 1621
[38] A. Foutel-Richard, Ph.D. Thesis CNAM, Paris, 2003
[39] J. Phys. Chem. B, 339 (2001), p. 297
[40] Appl. Surface Sci., 197–198 (2002), p. 563
[41] Rev. Mod. Phys., 52 (1980), p. 1
[42] Physics at Surfaces, Cambridge University Press, 1998
[43] Eur. Phys. J. B, 64 (2001), p. 125425
[44] Phys. Rev. Lett., 80 (1998), p. 3779
[45] et al. Appl. Phys. A (2000)
[46] Eur. Phys. J. B, 5 (1999), p. 251
[47] Science and Applications of Nanotubes (Tomanek; Enbody, eds.), Kluwer Academic/Plenum, New York, 2000, p. 1
[48] Eur. Phys. J. B, 13 (2000), p. 661
- Improvement in mechanical and ablation properties of carbon/carbon composites with nanofilamentous carbon and CeC2, Corrosion Science, Volume 207 (2022), p. 110593 | DOI:10.1016/j.corsci.2022.110593
- A review of filamentous carbon nanomaterial synthesis via catalytic conversion of waste plastic pyrolysis products, Journal of Environmental Chemical Engineering, Volume 10 (2022) no. 1, p. 107049 | DOI:10.1016/j.jece.2021.107049
- Low-Cost Catalyst Ink for Simple Patterning and Growth of High-Quality Single- and Double-Walled Carbon Nanotubes, ACS Applied Materials Interfaces, Volume 12 (2020) no. 10, p. 11898 | DOI:10.1021/acsami.9b19957
- Growth Mechanism of Vertically Aligned Carbon Nanotube Arrays, Chinese Journal of Chemical Physics, Volume 28 (2015) no. 5, p. 617 | DOI:10.1063/1674-0068/28/cjcp1502021
- Tracking and Quantification of Single-Walled Carbon Nanotubes in Fish Using Near Infrared Fluorescence, Environmental Science Technology, Volume 48 (2014) no. 3, p. 1973 | DOI:10.1021/es4046023
- Functions of amorphous carbon in catalyst fabrication for carbon nanofiber growth in the poly(ethylene glycol) thermal decomposition method, Journal of Materials Science, Volume 49 (2014) no. 15, p. 5289 | DOI:10.1007/s10853-014-8231-2
- CNT Arrays Grown upon Catalytic Nickel Particles as Applied in the Nanoelectronic Devices: Ab Initio Simulation of Growth Mechanism, Nanodevices and Nanomaterials for Ecological Security (2012), p. 101 | DOI:10.1007/978-94-007-4119-5_9
- Highly graphitized laterally interconnected SWCNT network synthesis via a sandwich-grown method, Journal of Physics D: Applied Physics, Volume 44 (2011) no. 14, p. 145401 | DOI:10.1088/0022-3727/44/14/145401
- Atomic force microscope measurements andLCAO−S2 + vdW calculations of contact length between a carbon nanotube and a graphene surface, Physical Review B, Volume 83 (2011) no. 4 | DOI:10.1103/physrevb.83.045410
- Carbon Nanotubes Filled with Ferromagnetic Materials, Materials, Volume 3 (2010) no. 8, p. 4387 | DOI:10.3390/ma3084387
- New Microscopy Techniques for a Better Understanding of the Polymer/Nanotube Composite Properties, Polymer Nanotube Nanocomposites (2010), p. 45 | DOI:10.1002/9780470905647.ch3
- BROAD BUNDLES OF SINGLE-WALLED CARBON NANOTUBE SYNTHESIZED OVER Fe2O3/MgO VIA CHEMICAL VAPOR DEPOSITION OF METHANE, Nano, Volume 04 (2009) no. 02, p. 77 | DOI:10.1142/s1793292009001526
- Substrate preparation techniques for direct investigation by TEM of single wall carbon nanotubes grown by chemical vapor deposition, Surface Science, Volume 603 (2009) no. 8, p. 1115 | DOI:10.1016/j.susc.2009.02.029
- Role of the catalyst and substrate in nucleation and growth of Single Wall Carbon Nanotubes in HFCVD, EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany (2008), p. 205 | DOI:10.1007/978-3-540-85226-1_103
- Self-assembly of multiwalled carbon nanotubes from quench-condensed CNi3 films, Journal of Applied Physics, Volume 103 (2008) no. 5 | DOI:10.1063/1.2888571
- The Role of Nickel in Ni-Containing Nanotubes and Onions as Lubricant Additives, Tribology Letters, Volume 29 (2008) no. 3, p. 213 | DOI:10.1007/s11249-008-9298-1
- Texturising and structurising mechanisms of carbon nanofilaments during growth, Journal of Materials Chemistry, Volume 17 (2007) no. 43, p. 4611 | DOI:10.1039/b707742d
- Ab Initio Simulations of the Nucleation of Single-Walled Carbon Nanotubes, Solid State Phenomena, Volume 121-123 (2007), p. 1037 | DOI:10.4028/www.scientific.net/ssp.121-123.1037
- TEM SAMPLE PREPARATION FOR STUDYING THE INTERFACE CNTS-CATALYST-SUBSTRATE, Carbon Nanotubes, Volume 222 (2006), p. 47 | DOI:10.1007/1-4020-4574-3_5
- Synthesis Methods and Growth Mechanisms, Understanding Carbon Nanotubes, Volume 677 (2006), p. 49 | DOI:10.1007/3-540-37586-4_2
Cité par 20 documents. Sources : Crossref
Commentaires - Politique