Comptes Rendus
Prix Madeleine Lecoq 2011
Coupled study by TEM/EELS and STM/STS of electronic properties of C- and CNx-nanotubes
[Étude couplée par TEM/EELS et STM/STS des propriétés structurales et électroniques des nanotubes C et CNx]
Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 909-920.

Les nanotubes de carbone sont lʼobjet dʼimportants efforts de recherche en raison de leurs fascinantes propriétés physiques. Ils constituent un système modèle particulièrement intéressant pour lʼétude fondamentale de matériaux à une dimension et pour lʼélectronique moléculaire. Selon leur chiralité, les nanotubes peuvent adopter un comportement électronique soit semiconducteur soit métallique. Leur spectre électronique est dominé par une série de singularités de Van Hove qui définit la bande interdite des tubes semiconducteurs et les orbitales moléculaires situées à ces énergies. Pour contrôler et moduler les propriétés électroniques des nanotubes, une voie prometteuse est dʼutiliser le dopage par des hétéroatomes. Les travaux présentés ici portent sur lʼétude expérimentale de lʼinfluence des interactions à N corps sur la valeur de la bande interdite des tubes semiconducteurs, la visualisation dans lʼespace direct des orbitales moléculaires des nanotubes et les propriétés des nanotubes dopés par lʼazote en utilisant des mesures de microscopie tunnel, microscopie électronique à balayage et spectroscopie de perte dʼénergie des électrons.

Carbon nanotubes are the focus of considerable research efforts due to their fascinating physical properties. They provide an excellent model system for the study of one-dimensional materials and molecular electronics. The chirality of nanotubes can lead to very different electronic behaviour, either metallic or semiconducting. Their electronic spectrum consists of a series of Van Hove singularities defining a bandgap for semiconducting tubes and molecular orbitals at the corresponding energies. A promising way to tune the nanotubes electronic properties for future applications is to use doping by heteroatoms. Here we report on the experimental investigation of the role of many-body interactions in nanotube bandgaps, the visualization in direct space of the molecular orbitals of nanotubes and the properties of nitrogen doped nanotubes using scanning tunneling microscopy and transmission electron microscopy as well as electron energy loss spectroscopy.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2011.10.013
Keywords: Carbon nanotubes, STM/STS, EELS
Mot clés : Nanotubes de carbone, STM/STS, EELS
Hong Lin 1, 2 ; Jérôme Lagoute 2 ; Vincent Repain 2 ; Cyril Chacon 2 ; Yann Girard 2 ; Jean-Sébastien Lauret 3 ; Raul Arenal 1, 4 ; François Ducastelle 1 ; Sylvie Rousset 2 ; Annick Loiseau 1

1 Laboratoire dʼétude des microstructures, ONERA-CNRS, BP 72, 92322 Châtillon cedex, France
2 Laboratoire matériaux et phénomènes quantiques, CNRS-université Paris 7, 10, rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
3 Laboratoire de photonique quantique et moléculaire, institut dʼAlembert, École normale supérieure de Cachan, 94235 Cachan cedex, France
4 Laboratorio de microscopias avanzadas, Instituto de Nanociencia de Aragon, U. Zaragoza, c/Mariano Esquillor, 50018 Zaragoza, Spain
@article{CRPHYS_2011__12_9-10_909_0,
     author = {Hong Lin and J\'er\^ome Lagoute and Vincent Repain and Cyril Chacon and Yann Girard and Jean-S\'ebastien Lauret and Raul Arenal and Fran\c{c}ois Ducastelle and Sylvie Rousset and Annick Loiseau},
     title = {Coupled study by {TEM/EELS} and {STM/STS} of electronic properties of {C-} and $ {\text{CN}}_{x}$-nanotubes},
     journal = {Comptes Rendus. Physique},
     pages = {909--920},
     publisher = {Elsevier},
     volume = {12},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crhy.2011.10.013},
     language = {en},
}
TY  - JOUR
AU  - Hong Lin
AU  - Jérôme Lagoute
AU  - Vincent Repain
AU  - Cyril Chacon
AU  - Yann Girard
AU  - Jean-Sébastien Lauret
AU  - Raul Arenal
AU  - François Ducastelle
AU  - Sylvie Rousset
AU  - Annick Loiseau
TI  - Coupled study by TEM/EELS and STM/STS of electronic properties of C- and $ {\text{CN}}_{x}$-nanotubes
JO  - Comptes Rendus. Physique
PY  - 2011
SP  - 909
EP  - 920
VL  - 12
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2011.10.013
LA  - en
ID  - CRPHYS_2011__12_9-10_909_0
ER  - 
%0 Journal Article
%A Hong Lin
%A Jérôme Lagoute
%A Vincent Repain
%A Cyril Chacon
%A Yann Girard
%A Jean-Sébastien Lauret
%A Raul Arenal
%A François Ducastelle
%A Sylvie Rousset
%A Annick Loiseau
%T Coupled study by TEM/EELS and STM/STS of electronic properties of C- and $ {\text{CN}}_{x}$-nanotubes
%J Comptes Rendus. Physique
%D 2011
%P 909-920
%V 12
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2011.10.013
%G en
%F CRPHYS_2011__12_9-10_909_0
Hong Lin; Jérôme Lagoute; Vincent Repain; Cyril Chacon; Yann Girard; Jean-Sébastien Lauret; Raul Arenal; François Ducastelle; Sylvie Rousset; Annick Loiseau. Coupled study by TEM/EELS and STM/STS of electronic properties of C- and $ {\text{CN}}_{x}$-nanotubes. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 909-920. doi : 10.1016/j.crhy.2011.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.013/

[1] R. Saito; G. Dresselhaus Physical Properties of Carbon Nanotubes, Imperial College Press, 1998

[2] A. Loiseau; P. Launois; P. Petit; S. Roche; J. Salvetat Understanding Carbon Nanotubes, Springer, 2006

[3] M. Terrones; A. Jorio; M. Endo; A. Rao; Y. Kim; T. Hayashi; H. Terrones; J.-C. Charlier; G. Dresselhaus; M. Dresselhaus New direction in nanotube science, Mater. Today, Volume 7 (2004), p. 30

[4] C.P. Ewels; M. Glerup Nitrogen doping in carbon nanotubes, J. Nanosci. Nanotechnol., Volume 5 (2005), p. 1345

[5] P. Ayala; R. Arenal; A. Loiseau; A. Rubio; T. Pichler The physical and chemical properties of heteronanotubes, Rev. Mod. Phys., Volume 82 (2010), p. 1843

[6] P. Ayala; R. Arenal; M. Rümmell; A. Rubio; T. Pichler The doping of carbon nanotubes with nitrogen and their potential applications, Carbon, Volume 48 (2010), p. 575

[7] R. Arenal; X. Blase; A. Loiseau Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory, Adv. Phys., Volume 59 (2010), p. 101

[8] M. Terrones; P. Ajayan; F. Banhart; X. Blase; D. Carroll; J. Charlier; R. Czerw; B. Foley; N. Grobert; R. Kamalakaran; P. Kohler-Redlich; M. Rühle; T. Seeger; H. Terrones N-doping and coalescence of carbon nanotubes: synthesis and electronic properties, Appl. Phys. A: Mat. Sci. Process., Volume 74 (2002), p. 355

[9] M. Glerup; H. Kanzow; R. Almairac; M. Castignolles; P. Bernier Synthesis of multi-walled carbon nanotubes and nano-fibres using the aerosol method with metal-ions as the catalyst precursors, Chem. Phys. Lett., Volume 377 (2003), p. 293

[10] M. Glerup; J. Steinmetz; D. Samaille; O. Stephan; S. Enouz; A. Loiseau; S. Roth; P. Bernier Synthesis of N-doped SWNT using the arc-discharge procedure, Chem. Phys. Lett., Volume 387 (2004), p. 193

[11] P. Ayala; A. Gruneis; C. Kramberger; M.H. Rummeli; I.G. Solorzano; F.L. Freire; T. Pichler Effects of the reaction atmosphere composition on the synthesis of single and multiwalled nitrogen-doped nanotubes, J. Chem. Phys., Volume 127 (2007), p. 184709

[12] H. Lin; R. Arenal; S. Enouz-Vedrenne; O. Stephan; A. Loiseau Nitrogen configuration in individual CNx-SWNTs synthesized by laser vaporization technique, J. Phys. Chem. C, Volume 113 (2009), p. 9509

[13] J.W.G. Wilder; L.C. Venema; A.G. Rinzler; R.E. Smalley; C. Dekker Electronic structure of atomically resolved carbon nanotubes, Nature, Volume 391 (1998), p. 59

[14] T.W. Odom; J.-L. Huang; P. Kim; C.M. Lieber Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, Volume 391 (1998), p. 62

[15] A.V. Krasheninnikov Theoretical STM images of carbon nanotubes with atomic vacancies: A systematic tight-binding study, Phys. Low-Dim. Struct., Volume 11/12 (2000), p. 1

[16] V. Meunier; P. Lambin Scanning tunneling microscopy and spectroscopy of topological defects in carbon nanotubes, Carbon, Volume 38 (2000), p. 1729

[17] D. Orlikowski; M. Buongiorno Nardelli; J. Bernholc; C. Roland Theoretical STM signatures and transport properties of native defects in carbon nanotubes, Phys. Rev. B, Volume 61 (2000), p. 14194

[18] M. Ouyang; J.-L. Huang; C.L. Cheung; C.M. Lieber Atomically resolved single-walled carbon nanotube intramolecular junctions, Science, Volume 291 (2001), p. 97

[19] H. Kim; J. Lee; S.-J. Kahng; Y.-W. Son; S.B. Lee; C.-K. Lee; J. Ihm; Y. Kuk Direct observation of localized defect states in semiconductor nanotube junctions, Phys. Rev. Lett., Volume 90 (2003), p. 216107

[20] M. Ishigami; H.J. Choi; S. Aloni; S.G. Louie; M.L. Cohen; A. Zettl Identifying defects in nanoscale materials, Phys. Rev. Lett., Volume 93 (2004), p. 196803

[21] G. Buchs; P. Ruffieux; P. Groning; O. Groning Scanning tunneling microscopy investigations of hydrogen plasma-induced electron scattering centers on single-walled carbon nanotubes, Appl. Phys. Lett., Volume 90 (2007), p. 013104

[22] R. Czerw; M. Terrones; J.C. Charlier; X. Blase; B. Foley; R. Kamalakaran; N. Grobert; H. Terrones; D. Tekleab; P.M. Ajayan; W. Blau; M. Rühle; D.L. Carroll Identification of electron donor states in N-doped carbon nanotubes, Nano Lett., Volume 1 (2001), p. 457

[23] N. Hamada; S.-i. Sawada; A. Oshiyama New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett., Volume 68 (1992), p. 1579

[24] J.W. Mintmire; B.I. Dunlap; C.T. White Are fullerene tubules metallic?, Phys. Rev. Lett., Volume 68 (1992), p. 631

[25] R. Saito; M. Fujita; G. Dresselhaus; M.S. Dresselhaus Electronic structure of graphene tubules based on C60, Phys. Rev. B, Volume 46 (1992), p. 1804

[26] T. Ando Excitons in carbon nanotubes, J. Phys. Soc. Jpn., Volume 66 (1997), p. 1066

[27] C.L. Kane; E.J. Mele Ratio problem in single carbon nanotube fluorescence spectroscopy, Phys. Rev. Lett., Volume 90 (2003), p. 207401

[28] M.S. Dresselhaus; G. Dresselhaus; R. Saito; A. Jorio Exciton photophysics of carbon nanotubes, Ann. Rev. Phys. Chem., Volume 58 (2007), p. 719

[29] T. Ando; U. Seiji Theory of electronic states in carbon nanotubes, Phys. Stat. Sol. (c), Volume 6 (2009), p. 173

[30] M.S. Strano; C.A. Dyke; M.L. Usrey; P.W. Barone; M.J. Allen; H. Shan; C. Kittrell; R.H. Hauge; J.M. Tour; R.E. Smalley Electronic structure control of single-walled carbon nanotube functionalization, Science, Volume 301 (2003), p. 1519

[31] H. Lin; J. Lagoute; C. Chacon; R. Arenal; O. Stehan; V. Repain; Y. Girard; S. Enouz; L. Bresson; S. Rousset; A. Loiseau Combined STM/STS, TEM/EELS investigation of CNx-SWNTs, Phys. Stat. Sol. (b), Volume 245 (2008), p. 1986

[32] J.-L. Cochon, J. Gavillet, M.L. de la Chapelle, A. Loiseau, M. Ory, D. Pigache, A continuous wave CO2 laser reactor for nanotubes synthesis, in: AIP Conf. Proc., vol. 486, AIP, Kirchberg, Tirol (Austria), 1999, pp. 237–240.

[33] T. Susi; A.G. Nasibulin; P. Ayala; Y. Tian; Z. Zhu; H. Jiang; C. Roquelet; D. Garrot; J.-S. Lauret; E.I. Kauppinen High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor, Phys. Stat. Sol. (b), Volume 246 (2009), p. 2507

[34] M. Ouyang; J.-L. Huang; C.L. Cheung; C.M. Lieber Energy gaps in “Metallic” single-walled carbon nanotubes, Science, Volume 292 (2001), p. 702

[35] A. Kleiner; S. Eggert Curvature, hybridization, and STM images of carbon nanotubes, Phys. Rev. B, Volume 64 (2001), p. 113402

[36] P. Delaney; H. Joon Choi; J. Ihm; S.G. Louie; M.L. Cohen Broken symmetry and pseudogaps in ropes of carbon nanotubes, Phys. Rev. B, Volume 60 (1999), p. 7899

[37] L.C. Venema; V. Meunier; P. Lambin; C. Dekker Atomic structure of carbon nanotubes from scanning tunneling microscopy, Phys. Rev. B, Volume 61 (2000), p. 2991

[38] L.C. Venema; J.W. Janssen; M.R. Buitelaar; J.W.G. Wildöer; S.G. Lemay; L.P. Kouwenhoven; C. Dekker Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes, Phys. Rev. B, Volume 62 (2000), p. 5238

[39] R. Hesper; L.H. Tjeng; G.A. Sawatzky Strongly reduced band gap in a correlated insulator in close proximity to a metal, EPL (Europhys. Lett.), Volume 40 (1997), p. 177

[40] X. Lu; M. Grobis; K.H. Khoo; S.G. Louie; M.F. Crommie Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study, Phys. Rev. B, Volume 70 (2004), p. 115418

[41] J.D. Sau; J.B. Neaton; H.J. Choi; S.G. Louie; M.L. Cohen Electronic energy levels of weakly coupled nanostructures: C60-metal interfaces, Phys. Rev. Lett., Volume 101 (2008), p. 026804

[42] H. Lin; J. Lagoute; V. Repain; C. Chacon; Y. Girard; J.-S. Lauret; F. Ducastelle; A. Loiseau; S. Rousset Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy, Nat. Mater., Volume 9 (2010), p. 235

[43] F. Wang; G. Dukovic; L.E. Brus; T.F. Heinz The optical resonances in carbon nanotubes arise from excitons, Science, Volume 308 (2005), p. 838

[44] G. Dukovic; F. Wang; D. Song; M.Y. Sfeir; T.F. Heinz; L.E. Brus Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett., Volume 5 (2005), p. 2314

[45] C.L. Kane; E.J. Mele Broken symmetries in scanning tunneling images of carbon nanotubes, Phys. Rev. B, Volume 59 (1999), p. R12759

[46] V. Meunier; P. Lambin Tight-binding computation of the STM image of carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998), p. 5588

[47] P. Lambin; G.I. Márk; V. Meunier; L.P. Biró Computation of STM images of carbon nanotubes, Int. J. Quantum Chem., Volume 95 (2003), p. 493

[48] H. Lin; J. Lagoute; V. Repain; C. Chacon; Y. Girard; F. Ducastelle; H. Amara; A. Loiseau; P. Hermet; L. Henrard; S. Rousset Imaging the symmetry breaking of molecular orbitals in single-wall carbon nanotubes, Phys. Rev. B, Volume 81 (2010), p. 235412

[49] W. Clauss; D.J. Bergeron; M. Freitag; C.L. Kane; E.J. Mele; A.T. Johnson Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy, EPL (Europhys. Lett.), Volume 47 (1999), p. 601

[50] M. Furuhashi; T. Komeda Chiral vector determination of carbon nanotubes by observation of interference patterns near the end cap, Phys. Rev. Lett., Volume 101 (2008), p. 185503

[51] L.C. Venema; J.W. Wildöer; J.W. Janssen; S.J. Tans; H.L. Tuinstra; L.P. Kouwenhoven; C. Dekker Imaging electron wave functions of quantized energy levels in carbon nanotubes, Science, Volume 283 (1999), p. 52

[52] S.G. Lemay; J.W. Janssen; M. van den Hout; M. Mooij; M.J. Bronikowski; P.A. Willis; R.E. Smalley; L.P. Kouwenhoven; C. Dekker Two-dimensional imaging of electronic wavefunctions in carbon nanotubes, Nature, Volume 412 (2001), p. 617

[53] A. Rubio; D. Sánchez-Portal; E. Artacho; P. Ordejón; J.M. Soler Electronic states in a finite carbon nanotube: A one-dimensional quantum box, Phys. Rev. Lett., Volume 82 (1999), p. 3520

[54] V. Meunier; P. Lambin Scanning tunnelling microscopy of carbon nanotubes, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 362 (2004), p. 2187

[55] A.V. Krasheninnikov Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies, Solid State Comm., Volume 118 (2001), p. 361

[56] B. Zheng, P. Hermet, L. Henrard, Personal communication, 2010.

[57] G. Buchs; A.V. Krasheninnikov; P. Ruffieux; P. Groning; A.S. Foster; R.M. Nieminen; O. Groning Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption, New J. Phys., Volume 9 (2007), p. 275

[58] M. Berthe; S. Yoshida; Y. Ebine; K. Kanazawa; A. Okada; A. Taninaka; O. Takeuchi; N. Fukui; H. Shinohara; S. Suzuki; K. Sumitomo; Y. Kobayashi; B. Grandidier; D. Stievenard; H. Shigekawa Reversible defect engineering of single-walled carbon nanotubes using scanning tunneling microscopy, Nano Lett., Volume 7 (2007), p. 3623

[59] G. Kim; B.W. Jeong; J. Ihm Deep levels in the band gap of the carbon nanotube with vacancy-related defects, Appl. Phys. Lett., Volume 88 (2006), p. 193107

[60] P. Ayala; A. Grueneis; T. Gemming; D. Grimm; C. Kramberger; M.H. Ruemmeli; F.L. Freire; H. Kuzmany; R. Pfeiffer; A. Barreiro; B. Buechner; T. Pichler Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock, J. Phys. Chem. C, Volume 111 (2007), p. 2879

[61] Y.-S. Min; E.J. Bae; U.J. Kim; E.H. Lee; N. Park; C.S. Hwang; W. Park Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes, Appl. Phys. Lett., Volume 93 (2008), p. 043113

[62] S.H. Yang; W.H. Shin; J.K. Kang The nature of graphite- and pyridinelike nitrogen configurations in carbon nitride nanotubes: Dependence on diameter and helicity, Small, Volume 4 (2008), p. 437

[63] Y.F. Li; Z. Zhou; L.B. Wang CNx nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials, J. Chem. Phys., Volume 129 (2008), p. 104703

[64] A.H. Nevidomskyy; G. Csányi; M.C. Payne Chemically active substitutional nitrogen impurity in carbon nanotubes, Phys. Rev. Lett., Volume 91 (2003), p. 105502

[65] H.J. Choi; J. Ihm; S.G. Louie; M.L. Cohen Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett., Volume 84 (2000), p. 2917

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Carbon nanotube chemistry and assembly for electronic devices

Vincent Derycke; Stéphane Auvray; Julien Borghetti; ...

C. R. Phys (2009)


Electronic structure of carbon nanotubes

Philippe Lambin

C. R. Phys (2003)


Nucleation and growth of SWNT: TEM studies of the role of the catalyst

Annick Loiseau; Julie Gavillet; François Ducastelle; ...

C. R. Phys (2003)