[Étude couplée par TEM/EELS et STM/STS des propriétés structurales et électroniques des nanotubes C et ]
Les nanotubes de carbone sont lʼobjet dʼimportants efforts de recherche en raison de leurs fascinantes propriétés physiques. Ils constituent un système modèle particulièrement intéressant pour lʼétude fondamentale de matériaux à une dimension et pour lʼélectronique moléculaire. Selon leur chiralité, les nanotubes peuvent adopter un comportement électronique soit semiconducteur soit métallique. Leur spectre électronique est dominé par une série de singularités de Van Hove qui définit la bande interdite des tubes semiconducteurs et les orbitales moléculaires situées à ces énergies. Pour contrôler et moduler les propriétés électroniques des nanotubes, une voie prometteuse est dʼutiliser le dopage par des hétéroatomes. Les travaux présentés ici portent sur lʼétude expérimentale de lʼinfluence des interactions à N corps sur la valeur de la bande interdite des tubes semiconducteurs, la visualisation dans lʼespace direct des orbitales moléculaires des nanotubes et les propriétés des nanotubes dopés par lʼazote en utilisant des mesures de microscopie tunnel, microscopie électronique à balayage et spectroscopie de perte dʼénergie des électrons.
Carbon nanotubes are the focus of considerable research efforts due to their fascinating physical properties. They provide an excellent model system for the study of one-dimensional materials and molecular electronics. The chirality of nanotubes can lead to very different electronic behaviour, either metallic or semiconducting. Their electronic spectrum consists of a series of Van Hove singularities defining a bandgap for semiconducting tubes and molecular orbitals at the corresponding energies. A promising way to tune the nanotubes electronic properties for future applications is to use doping by heteroatoms. Here we report on the experimental investigation of the role of many-body interactions in nanotube bandgaps, the visualization in direct space of the molecular orbitals of nanotubes and the properties of nitrogen doped nanotubes using scanning tunneling microscopy and transmission electron microscopy as well as electron energy loss spectroscopy.
Accepté le :
Publié le :
Mot clés : Nanotubes de carbone, STM/STS, EELS
Hong Lin 1, 2 ; Jérôme Lagoute 2 ; Vincent Repain 2 ; Cyril Chacon 2 ; Yann Girard 2 ; Jean-Sébastien Lauret 3 ; Raul Arenal 1, 4 ; François Ducastelle 1 ; Sylvie Rousset 2 ; Annick Loiseau 1
@article{CRPHYS_2011__12_9-10_909_0, author = {Hong Lin and J\'er\^ome Lagoute and Vincent Repain and Cyril Chacon and Yann Girard and Jean-S\'ebastien Lauret and Raul Arenal and Fran\c{c}ois Ducastelle and Sylvie Rousset and Annick Loiseau}, title = {Coupled study by {TEM/EELS} and {STM/STS} of electronic properties of {C-} and $ {\text{CN}}_{x}$-nanotubes}, journal = {Comptes Rendus. Physique}, pages = {909--920}, publisher = {Elsevier}, volume = {12}, number = {9-10}, year = {2011}, doi = {10.1016/j.crhy.2011.10.013}, language = {en}, }
TY - JOUR AU - Hong Lin AU - Jérôme Lagoute AU - Vincent Repain AU - Cyril Chacon AU - Yann Girard AU - Jean-Sébastien Lauret AU - Raul Arenal AU - François Ducastelle AU - Sylvie Rousset AU - Annick Loiseau TI - Coupled study by TEM/EELS and STM/STS of electronic properties of C- and $ {\text{CN}}_{x}$-nanotubes JO - Comptes Rendus. Physique PY - 2011 SP - 909 EP - 920 VL - 12 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2011.10.013 LA - en ID - CRPHYS_2011__12_9-10_909_0 ER -
%0 Journal Article %A Hong Lin %A Jérôme Lagoute %A Vincent Repain %A Cyril Chacon %A Yann Girard %A Jean-Sébastien Lauret %A Raul Arenal %A François Ducastelle %A Sylvie Rousset %A Annick Loiseau %T Coupled study by TEM/EELS and STM/STS of electronic properties of C- and $ {\text{CN}}_{x}$-nanotubes %J Comptes Rendus. Physique %D 2011 %P 909-920 %V 12 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2011.10.013 %G en %F CRPHYS_2011__12_9-10_909_0
Hong Lin; Jérôme Lagoute; Vincent Repain; Cyril Chacon; Yann Girard; Jean-Sébastien Lauret; Raul Arenal; François Ducastelle; Sylvie Rousset; Annick Loiseau. Coupled study by TEM/EELS and STM/STS of electronic properties of C- and $ {\text{CN}}_{x}$-nanotubes. Comptes Rendus. Physique, Volume 12 (2011) no. 9-10, pp. 909-920. doi : 10.1016/j.crhy.2011.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2011.10.013/
[1] Physical Properties of Carbon Nanotubes, Imperial College Press, 1998
[2] Understanding Carbon Nanotubes, Springer, 2006
[3] New direction in nanotube science, Mater. Today, Volume 7 (2004), p. 30
[4] Nitrogen doping in carbon nanotubes, J. Nanosci. Nanotechnol., Volume 5 (2005), p. 1345
[5] The physical and chemical properties of heteronanotubes, Rev. Mod. Phys., Volume 82 (2010), p. 1843
[6] The doping of carbon nanotubes with nitrogen and their potential applications, Carbon, Volume 48 (2010), p. 575
[7] Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory, Adv. Phys., Volume 59 (2010), p. 101
[8] N-doping and coalescence of carbon nanotubes: synthesis and electronic properties, Appl. Phys. A: Mat. Sci. Process., Volume 74 (2002), p. 355
[9] Synthesis of multi-walled carbon nanotubes and nano-fibres using the aerosol method with metal-ions as the catalyst precursors, Chem. Phys. Lett., Volume 377 (2003), p. 293
[10] Synthesis of N-doped SWNT using the arc-discharge procedure, Chem. Phys. Lett., Volume 387 (2004), p. 193
[11] Effects of the reaction atmosphere composition on the synthesis of single and multiwalled nitrogen-doped nanotubes, J. Chem. Phys., Volume 127 (2007), p. 184709
[12] Nitrogen configuration in individual CNx-SWNTs synthesized by laser vaporization technique, J. Phys. Chem. C, Volume 113 (2009), p. 9509
[13] Electronic structure of atomically resolved carbon nanotubes, Nature, Volume 391 (1998), p. 59
[14] Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, Volume 391 (1998), p. 62
[15] Theoretical STM images of carbon nanotubes with atomic vacancies: A systematic tight-binding study, Phys. Low-Dim. Struct., Volume 11/12 (2000), p. 1
[16] Scanning tunneling microscopy and spectroscopy of topological defects in carbon nanotubes, Carbon, Volume 38 (2000), p. 1729
[17] Theoretical STM signatures and transport properties of native defects in carbon nanotubes, Phys. Rev. B, Volume 61 (2000), p. 14194
[18] Atomically resolved single-walled carbon nanotube intramolecular junctions, Science, Volume 291 (2001), p. 97
[19] Direct observation of localized defect states in semiconductor nanotube junctions, Phys. Rev. Lett., Volume 90 (2003), p. 216107
[20] Identifying defects in nanoscale materials, Phys. Rev. Lett., Volume 93 (2004), p. 196803
[21] Scanning tunneling microscopy investigations of hydrogen plasma-induced electron scattering centers on single-walled carbon nanotubes, Appl. Phys. Lett., Volume 90 (2007), p. 013104
[22] Identification of electron donor states in N-doped carbon nanotubes, Nano Lett., Volume 1 (2001), p. 457
[23] New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett., Volume 68 (1992), p. 1579
[24] Are fullerene tubules metallic?, Phys. Rev. Lett., Volume 68 (1992), p. 631
[25] Electronic structure of graphene tubules based on C60, Phys. Rev. B, Volume 46 (1992), p. 1804
[26] Excitons in carbon nanotubes, J. Phys. Soc. Jpn., Volume 66 (1997), p. 1066
[27] Ratio problem in single carbon nanotube fluorescence spectroscopy, Phys. Rev. Lett., Volume 90 (2003), p. 207401
[28] Exciton photophysics of carbon nanotubes, Ann. Rev. Phys. Chem., Volume 58 (2007), p. 719
[29] Theory of electronic states in carbon nanotubes, Phys. Stat. Sol. (c), Volume 6 (2009), p. 173
[30] Electronic structure control of single-walled carbon nanotube functionalization, Science, Volume 301 (2003), p. 1519
[31] Combined STM/STS, TEM/EELS investigation of CNx-SWNTs, Phys. Stat. Sol. (b), Volume 245 (2008), p. 1986
[32] J.-L. Cochon, J. Gavillet, M.L. de la Chapelle, A. Loiseau, M. Ory, D. Pigache, A continuous wave CO2 laser reactor for nanotubes synthesis, in: AIP Conf. Proc., vol. 486, AIP, Kirchberg, Tirol (Austria), 1999, pp. 237–240.
[33] High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor, Phys. Stat. Sol. (b), Volume 246 (2009), p. 2507
[34] Energy gaps in “Metallic” single-walled carbon nanotubes, Science, Volume 292 (2001), p. 702
[35] Curvature, hybridization, and STM images of carbon nanotubes, Phys. Rev. B, Volume 64 (2001), p. 113402
[36] Broken symmetry and pseudogaps in ropes of carbon nanotubes, Phys. Rev. B, Volume 60 (1999), p. 7899
[37] Atomic structure of carbon nanotubes from scanning tunneling microscopy, Phys. Rev. B, Volume 61 (2000), p. 2991
[38] Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes, Phys. Rev. B, Volume 62 (2000), p. 5238
[39] Strongly reduced band gap in a correlated insulator in close proximity to a metal, EPL (Europhys. Lett.), Volume 40 (1997), p. 177
[40] Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study, Phys. Rev. B, Volume 70 (2004), p. 115418
[41] Electronic energy levels of weakly coupled nanostructures: C60-metal interfaces, Phys. Rev. Lett., Volume 101 (2008), p. 026804
[42] Many-body effects in electronic bandgaps of carbon nanotubes measured by scanning tunnelling spectroscopy, Nat. Mater., Volume 9 (2010), p. 235
[43] The optical resonances in carbon nanotubes arise from excitons, Science, Volume 308 (2005), p. 838
[44] Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett., Volume 5 (2005), p. 2314
[45] Broken symmetries in scanning tunneling images of carbon nanotubes, Phys. Rev. B, Volume 59 (1999), p. R12759
[46] Tight-binding computation of the STM image of carbon nanotubes, Phys. Rev. Lett., Volume 81 (1998), p. 5588
[47] Computation of STM images of carbon nanotubes, Int. J. Quantum Chem., Volume 95 (2003), p. 493
[48] Imaging the symmetry breaking of molecular orbitals in single-wall carbon nanotubes, Phys. Rev. B, Volume 81 (2010), p. 235412
[49] Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy, EPL (Europhys. Lett.), Volume 47 (1999), p. 601
[50] Chiral vector determination of carbon nanotubes by observation of interference patterns near the end cap, Phys. Rev. Lett., Volume 101 (2008), p. 185503
[51] Imaging electron wave functions of quantized energy levels in carbon nanotubes, Science, Volume 283 (1999), p. 52
[52] Two-dimensional imaging of electronic wavefunctions in carbon nanotubes, Nature, Volume 412 (2001), p. 617
[53] Electronic states in a finite carbon nanotube: A one-dimensional quantum box, Phys. Rev. Lett., Volume 82 (1999), p. 3520
[54] Scanning tunnelling microscopy of carbon nanotubes, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 362 (2004), p. 2187
[55] Predicted scanning tunneling microscopy images of carbon nanotubes with atomic vacancies, Solid State Comm., Volume 118 (2001), p. 361
[56] B. Zheng, P. Hermet, L. Henrard, Personal communication, 2010.
[57] Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption, New J. Phys., Volume 9 (2007), p. 275
[58] Reversible defect engineering of single-walled carbon nanotubes using scanning tunneling microscopy, Nano Lett., Volume 7 (2007), p. 3623
[59] Deep levels in the band gap of the carbon nanotube with vacancy-related defects, Appl. Phys. Lett., Volume 88 (2006), p. 193107
[60] Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock, J. Phys. Chem. C, Volume 111 (2007), p. 2879
[61] Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes, Appl. Phys. Lett., Volume 93 (2008), p. 043113
[62] The nature of graphite- and pyridinelike nitrogen configurations in carbon nitride nanotubes: Dependence on diameter and helicity, Small, Volume 4 (2008), p. 437
[63] CNx nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials, J. Chem. Phys., Volume 129 (2008), p. 104703
[64] Chemically active substitutional nitrogen impurity in carbon nanotubes, Phys. Rev. Lett., Volume 91 (2003), p. 105502
[65] Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett., Volume 84 (2000), p. 2917
Cité par Sources :
Commentaires - Politique