[Modèles cinétiques des superfluides : des résultats mathématiques]
Les contributions mathématiques de X.G. Lu (J. Statist. Phys. 98 (5/6) (2000) 1335–1394) et de M. Escobedo et al. (Electronic J. Differential Equations, Monograph 4 (2003)) qui sont présentées dans cette Note constituent la première avancée dans la compréhension de la dynamique superfluide et notamment de la condensation de Bose–Einstein grâce aux modèles cinétiques. L'équation de Boltzmann–Nordheim, qui permet de décrire l'évolution d'un gaz quantique dilué constitué de bosons, pose de nombreux problèmes mathématiques. Néanmoins, sous une hypothèse non physique de troncature des collisions à basse énergie, on peut montrer que le problème de Cauchy homogène en espace est bien posé. De plus, le système relaxe vers l'équilibre (en un sens faible), avec apparition d'une singularité en temps infini si la masse initiale est supercritique : cela correspond à la formation d'un condensat de Bose–Einstein.
The mathematical contributions by X.G. Lu (J. Statist. Phys. 98 (5/6) (2000) 1335–1394) and by M. Escobedo et al. (Electronic J. Differential Equations, Monograph 4 (2003)) presented in this Note constitute the first stage in the understanding of the superfluid dynamics, especially of the Bose–Einstein condensation, by means of kinetic models. The Boltzmann–Nordheim equation, which is physically relevant to describe dilute quantum Bose gases, sets important mathematical problems. Nevertheless, under an unphysical truncation of the collision cross-section at low energies, it has been proved that the spatially homogeneous Cauchy problem is well-posed. Furthermore, relaxation towards equilibrium holds in a weak sense, with the appearance of a singularity in infinite time if the initial mass is supercritical, which corresponds to the formation of a Bose–Einstein condensate.
Mot clés : Condensation de Bose–Einstein, Équation cinétique, Problème de Cauchy, Relaxation vers l'équilibre
Laure Saint-Raymond 1
@article{CRPHYS_2004__5_1_65_0, author = {Laure Saint-Raymond}, title = {Kinetic models for superfluids: a review of mathematical results}, journal = {Comptes Rendus. Physique}, pages = {65--75}, publisher = {Elsevier}, volume = {5}, number = {1}, year = {2004}, doi = {10.1016/j.crhy.2004.01.005}, language = {en}, }
Laure Saint-Raymond. Kinetic models for superfluids: a review of mathematical results. Comptes Rendus. Physique, Volume 5 (2004) no. 1, pp. 65-75. doi : 10.1016/j.crhy.2004.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.01.005/
[1] Bose Einstein condensates in atomic gases: simple theoretical results, École d'été des Houches, 2000
[2] Course of Theoretical Physics, Fluid Mechanics, vol. 6, Pergamon Press, Oxford–Elmsford, 1987
[3] Théorie cinétique d'un gaz de Bose dilué avec condensat, C. R. Acad. Sci. Paris, Volume 327 (1999), pp. 791-798
[4] Begründung des kinetischen Gastheorie, Math. Ann., Volume 72 (1912), pp. 562-577
[5] The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, 1970
[6] E. Zaremba, T. Nikuni, A. Griffin, Two-fluid hydrodynamics of a Bose gas including damping from normal fluid transport coefficients, in press
[7] On the kinetic Mathos in the New Statistics and its Applications in the Electron Theory of Conductivity, Proc. Roy. Soc. London Ser. A, Volume 119 (1928), p. 689
[8] J. Low Temp. Phys., 57 (1998), p. 4695
[9] Dynamical formation of a Bose–Einstein condensate, Physica D, Volume 152–153 (2001), pp. 779-786
[10] Equilibrium for Radiation in a Homogeneous Plasma, Phys. Fluids, Volume 29 (1986), pp. 748-752
[11] A nonlinear Fokker–Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 3837-3901
[12] Long term–long range dynamics of a classical field, Phys. Scripta T, Volume 67 (1996), pp. 141-142
[13] Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation, Ann. of Math., Volume 155-1 (2002), pp. 235-280
[14] A modified Boltzmann equation for Bose–Einstein particles: isotropic solutions and long time behaviour, J. Statist. Phys., Volume 98 (2000) no. 5–6, pp. 1335-1394
[15] On a quantum Boltzmann equation for a gas of photons, J. Math. Pures Appl., Volume 80 (2001) no. 5, pp. 471-515
[16] Homogeneous Boltzmann equation for quantum and relativistic particles, Electronic J. Differential Equations, Monograph, Volume 4 (2003)
[17] About the Boltzmann equation in kinetic gas theory, Mat. Sb., Volume 58 (1962), pp. 65-86
[18] Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663
[19] Time evolution of large classical systems, Lecture Notes in Phys., vol. 38, Springer, 1975, pp. 1-111
[20] La transformée de Wigner libre, évolution dans une collision, J. Phys., Volume 50 (1989), p. 1851
[21] Kinetic theory for quantum gases, Ann. Phys. (Paris), Volume 48 (1991), p. 149
Cité par Sources :
Commentaires - Politique