[Spectroscopie moléculaire Raman femtoseconde résolue en temps]
L'application de plusieurs techniques cohérentes non-linéaires femtosecondes résolues en temps comme la spectroscopie Raman de polarisation (RIPS), le mélange dégénéré à quatre ondes (DFWM), et la spectroscopie de diffusion Raman anti-Stokes cohérente (CARS), pour la spectroscopie moléculaire est présentée. Toutes les méthodes reposent sur l'excitation cohérente initiale d'états moléculaires produisant des paquets d'ondes dont l'évolution temporelle est ensuite mesurée. Dans les cas RIPS et DFWM, seuls des états rotationnels sont impliqués, alors qu'en CARS, des états vibrationnels peuvent être excités. En premier, la méthodologie des mesures de concentration et de température utilisant la technique RIPS dans des mélanges de gaz impliquant N2, CO2, O2, et N2O est présentée. Ensuite, plusieurs applications sont données pour les deux techniques proches DFWM et CARS. La technique DFWM est apte à extraire les constantes rotationnelles de molécules avec une grande précision comme il est démontré par des mesures sur CO2 et la pyrimidine, qui est une unité moléculaire de construction biologique. La technique CARS peut aussi être utilisée pour étudier des constantes moléculaires d'ordre supérieur et pour mesurer avec sensibilité la température dans H2 jusqu'à 2000 K. Finalement, la technique CARS est appliquée à l'investigation de modèles de forme de raie dépendant de la pression, qui sont importants pour la mesure de température à partir de données spectrales.
The applicability of several femtosecond time resolved non-linear coherent techniques such as Raman induced polarization spectroscopy (RIPS), degenerate four-wave mixing (DFWM) and coherent anti-Stokes Raman spectroscopy (CARS) for molecular spectroscopy is presented. All methods rely on the initial coherent excitation of molecular states producing wavepackets, whose time evolution is then measured. In the case of RIPS and DFWM only pure rotational transitions are involved, whereas in CARS vibrational states can be excited. First the methodology of concentration and temperature measurements using RIPS in gas mixtures involving N2, CO2, O2, and N2O is shown. In addition some applications are given for the two closely related techniques DFWM and CARS. DFWM is suitable to extract the rotational constants of molecules to a high accuracy as is demonstrated by measurements on CO2 and pyrimidine, which is a biological building block. CARS can be used to study higher order molecular constants and to sensitively determine temperature in, e.g., H2 up to 2000 K. Finally, CARS is applied for the investigation of pressure dependent lineshape models, which are important for the temperature evaluation from spectroscopic data.
Mots-clés : Laser femtoseconde, Phénomènes ultra-rapides, Spectroscopie non-linéaire cohérente et résolue en temps, Paquet d'ondes rovibrationnel, Mesure de pression, Thermométrie
Bruno Lavorel 1 ; Ha Tran 1, 2 ; Edouard Hertz 1 ; Olivier Faucher 1 ; Pierre Joubert 2 ; Marcus Motzkus 3 ; Tiago Buckup 3 ; Tobias Lang 3 ; Hrvoje Skenderovi 3 ; Gregor Knopp 4 ; Paul Beaud 4 ; Hans M. Frey 5
@article{CRPHYS_2004__5_2_215_0, author = {Bruno Lavorel and Ha Tran and Edouard Hertz and Olivier Faucher and Pierre Joubert and Marcus Motzkus and Tiago Buckup and Tobias Lang and Hrvoje Skenderovi and Gregor Knopp and Paul Beaud and Hans M. Frey}, title = {Femtosecond {Raman} time-resolved molecular spectroscopy}, journal = {Comptes Rendus. Physique}, pages = {215--229}, publisher = {Elsevier}, volume = {5}, number = {2}, year = {2004}, doi = {10.1016/j.crhy.2004.01.013}, language = {en}, }
TY - JOUR AU - Bruno Lavorel AU - Ha Tran AU - Edouard Hertz AU - Olivier Faucher AU - Pierre Joubert AU - Marcus Motzkus AU - Tiago Buckup AU - Tobias Lang AU - Hrvoje Skenderovi AU - Gregor Knopp AU - Paul Beaud AU - Hans M. Frey TI - Femtosecond Raman time-resolved molecular spectroscopy JO - Comptes Rendus. Physique PY - 2004 SP - 215 EP - 229 VL - 5 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2004.01.013 LA - en ID - CRPHYS_2004__5_2_215_0 ER -
%0 Journal Article %A Bruno Lavorel %A Ha Tran %A Edouard Hertz %A Olivier Faucher %A Pierre Joubert %A Marcus Motzkus %A Tiago Buckup %A Tobias Lang %A Hrvoje Skenderovi %A Gregor Knopp %A Paul Beaud %A Hans M. Frey %T Femtosecond Raman time-resolved molecular spectroscopy %J Comptes Rendus. Physique %D 2004 %P 215-229 %V 5 %N 2 %I Elsevier %R 10.1016/j.crhy.2004.01.013 %G en %F CRPHYS_2004__5_2_215_0
Bruno Lavorel; Ha Tran; Edouard Hertz; Olivier Faucher; Pierre Joubert; Marcus Motzkus; Tiago Buckup; Tobias Lang; Hrvoje Skenderovi; Gregor Knopp; Paul Beaud; Hans M. Frey. Femtosecond Raman time-resolved molecular spectroscopy. Comptes Rendus. Physique, Gas phase molecular spectroscopy, Volume 5 (2004) no. 2, pp. 215-229. doi : 10.1016/j.crhy.2004.01.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.01.013/
[1] Chem. Phys. Lett., 209 (1993), p. 1
[2] Chem. Phys. Lett., 133 (1987), p. 373
[3] , Topics Appl. Phys., vol. 60, Springer, Berlin, 1988, p. 235
[4] Principles of Nonlinear Optical Spectroscopy, Oxford University Press, Oxford, 1995
[5] J. Phys. Chem., 100 (1996), p. 5620
[6] J. Raman Spectrosc., 31 (2000), p. 653
[7] , Femtosecond Chemistry, vol. 1, VCH, Weinheim, 1995
(J. Manz; L. Wöste, eds.)[8] Chem. Phys. Lett., 191 (1992), p. 182
[9] Chem Phys. Lett., 325 (2000), p. 176
[10] Chem. Phys. Lett., 270 (1997), p. 9
[11] Chem. Phys. Lett., 310 (1999), p. 65
[12] J. Raman Spectrosc., 33 (2002), p. 861
[13] J. Chem. Phys., 102 (1995), p. 8780
[14] J. Raman Spectrosc., 31 (2000), p. 77
[15] J. Raman Spectrosc., 33 (2002), p. 872
[16] J. Chem. Phys., 113 (2000), p. 6629
[17] Appl. Phys. B, 68 (1999), p. 735
[18] J. Raman Spectrosc., 31 (2000), p. 71
[19] , Topics Current Phys., vol. 11, Springer, Berlin, 1979 (p. 123)
[20] H. Frey, D. Kummli, S. Leutwyler, in preparation
[21] Spectra of Diatomic Molecules, vol. 1, Molecular Spectra and Molecular Structure, Krieger, Florida, 1950
[22] Opt. Lett., 10 (1985), p. 478
[23] J. Chem. Phys., 118 (2003), p. 8223
[24] J. Chem. Phys., 71 (1979), p. 850
[25] Phys. Rev., 141 (1966), p. 34
[26] Phys. Rev. Lett., 41 (1978), p. 856
[27] J. Chem. Phys., 56 (1972), p. 1563
[28] J. Chem. Phys., 64 (1976), p. 808
[29] Chem. Phys. Lett., 371 (2003), p. 194
[30] Chem. Phys. Lett., 373 (2003), p. 251
[31] Phys. Rev. Lett., 90 (2003), p. 153601
[32] Sov. Phys. JETP, 47 (1978), p. 667
[33] J. Chem. Phys., 115 (2001), p. 3598
[34] J. Chem. Phys., 115 (2001), p. 5418
[35] Chem. Phys. Lett., 344 (2001), p. 407
[36] J. Chem. Phys., 89 (1988), p. 5568
[37] Phys. Rev. A, 63 (2000), p. 012715
- An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy, Communications Chemistry, Volume 8 (2025) no. 1 | DOI:10.1038/s42004-024-01397-8
- Femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry in the exhaust of a rotating detonation combustor, Combustion and Flame, Volume 231 (2021), p. 111504 | DOI:10.1016/j.combustflame.2021.111504
- What Does It Mean to Think Like a Chemist?, Integrating Professional Skills into Undergraduate Chemistry Curricula, Volume 1365 (2020), p. 57 | DOI:10.1021/bk-2020-1365.ch005
- , AIAA Scitech 2019 Forum (2019) | DOI:10.2514/6.2019-1086
- Dissipation of post‐pulse laser‐induced alignment of CO2 through collisions with Ar, Journal of Raman Spectroscopy, Volume 46 (2015) no. 8, p. 691 | DOI:10.1002/jrs.4646
- Vibrational femtosecond/picosecond coherent anti‐Stokes Raman scattering with enhanced temperature sensitivity for flame thermometry from 300 to 2400 K, Journal of Raman Spectroscopy, Volume 46 (2015) no. 8, p. 702 | DOI:10.1002/jrs.4725
- Line-space description of resonant four-wave mixing: Theory for isotropic molecular states, The Journal of Chemical Physics, Volume 140 (2014) no. 19 | DOI:10.1063/1.4874159
- Molecular dynamics simulations for CO2 spectra. IV. Collisional line-mixing in infrared and Raman bands, The Journal of Chemical Physics, Volume 138 (2013) no. 24 | DOI:10.1063/1.4811518
- Spectral-to-Temporal Amplitude Mapping Polarization Spectroscopy of Rotational Transients, The Journal of Physical Chemistry A, Volume 117 (2013) no. 29, p. 6354 | DOI:10.1021/jp402135t
- Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering, Optics Express, Volume 20 (2012) no. 5, p. 5003 | DOI:10.1364/oe.20.005003
- Ionization-Grating-Induced Nonlinear Phase Accumulation in Spectrally Resolved Transient Birefringence Measurements at 400 nm, Physical Review Letters, Volume 109 (2012) no. 6 | DOI:10.1103/physrevlett.109.065003
- High‐Resolution Fourier Transform Infrared Spectroscopy, Handbook of High‐resolution Spectroscopy (2011) | DOI:10.1002/9780470749593.hrs042
- CARS Spectroscopy, Handbook of Combustion (2010), p. 155 | DOI:10.1002/9783527628148.hoc026
- Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows, Progress in Energy and Combustion Science, Volume 36 (2010) no. 2, p. 280 | DOI:10.1016/j.pecs.2009.11.001
- Strong field effects in rotational femtosecond degenerate four-wave mixing, The Journal of Chemical Physics, Volume 132 (2010) no. 13 | DOI:10.1063/1.3367726
- Femtosecond Laser Applications in Micro/Nano Science and Technology: Nonlinear Effects in Photonic Crystal Fibers, Femtosecond Laser-Induced Forward Transfer, and Femtosecond Laser Manipulation System for Biology, Progress in Ultrafast Intense Laser Science, Volume 91 (2009), p. 233 | DOI:10.1007/978-3-540-69143-3_11
- Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2–N2 mixtures in the Dicke regime: Experiments and modeling of velocity effects, The Journal of Chemical Physics, Volume 131 (2009) no. 17 | DOI:10.1063/1.3257640
- Field‐free molecular alignment of CO2 mixtures in presence of collisional relaxation, Journal of Raman Spectroscopy, Volume 39 (2008) no. 6, p. 694 | DOI:10.1002/jrs.1976
- Correlations of instantaneous transition energy and intensity of absorption peaks during molecular vibration: toward potential hyper-surface, New Journal of Physics, Volume 10 (2008) no. 6, p. 065015 | DOI:10.1088/1367-2630/10/6/065015
- High resolution rovibrational spectroscopy of pyrimidine: Analysis of the B1 modes ν10b and ν4 and B2 mode ν6b, Journal of Molecular Spectroscopy, Volume 243 (2007) no. 2, p. 280 | DOI:10.1016/j.jms.2007.04.009
- Time‐resolved investigation of the ν1 ro‐vibrational Raman band of H2CO with fs‐CARS, Journal of Raman Spectroscopy, Volume 38 (2007) no. 2, p. 147 | DOI:10.1002/jrs.1613
- Suppression of plasma contribution in femtosecond degenerate four‐wave mixing (fs‐DFWM) at high intensity, Journal of Raman Spectroscopy, Volume 38 (2007) no. 8, p. 969 | DOI:10.1002/jrs.1679
- Optical gratings induced by field-free alignment of molecules, Physical Review A, Volume 75 (2007) no. 1 | DOI:10.1103/physreva.75.013419
- Coherent and phase-sensitive phenomena of ultrashort laser pulses propagating in three-levelΛ-type systems studied with the finite-difference time-domain method, Physical Review A, Volume 73 (2006) no. 6 | DOI:10.1103/physreva.73.063809
- Orientation and alignment moments in two-color polarization spectroscopy, The Journal of Chemical Physics, Volume 122 (2005) no. 16 | DOI:10.1063/1.1883646
Cité par 25 documents. Sources : Crossref
Commentaires - Politique