Comptes Rendus
Collisional effects on spectral line-shapes
[Effets collisionnels sur les profils spectraux]
Comptes Rendus. Physique, Volume 5 (2004) no. 2, pp. 201-214.

La préoccupation croissante de l'humanité pour la compréhension et la sauvegarde de son environnement a engendré un regain d'intérêt scientifique pour l'étude des atmosphères planétaires à commencer par celle de notre Terre. Les spectromètres embarqués fournissent des informations de plus en plus précises sur la transmission et l'émission de rayonnement par ces atmosphères. Leur traitement par « inversion », dans le but d'extraire les profils verticaux (pression, température, fractions molaires), demande une modélisation précise des spectres d'absorption infrarouge. Dans ce cadre, la prise en compte de l'influence de la pression sur les profils est généralement cruciale. Ces effets des collisions inter-moléculaires entre l'espèce optiquement active et ses « perturbateurs » sont multiples et complexes et dépendent, pour l'essentiel, du domaine de densité des partenaires de collision. Cet article se propose d'illustrer et de passer en revue, à travers quelques exemples, l'actualité de ce domaine de recherche. Cet état des connaissances théoriques est à relier à la qualité croissante des dispositifs de laboratoire ou embarqués (lasers à différence de fréquences, spectromètres à transformée de Fourier et à diode laser,…) qui fournissent aujourd'hui des données d'une précision sans commune mesure avec ce qui était accessible il y a encore une dizaine d'années.

The growing concern of mankind for the understanding and preserving of its environment has stimulated great interest for the study of planetary atmospheres and, first of all, for that of the Earth. Onboard spectrometers now provide more and more precise information on the transmission and emission of radiation by these atmospheres. Its treatment by ‘retrieval’ technics, in order to extract vertical profiles (pressure, temperature, volume mixing ratios) requires precise modeling of infrared absorption spectra. Within this framework, accounting for the influence of pressure on the absorption shape is crucial. These effects of inter-molecular collisions between the optically active species and the ‘perturbers’ are complex and of various types depending mostly on the density of perturbers. The present paper attempts to review and illustrate, through a few examples, the state of the art in this field. This is to be related with the increasing quality of laboratory or onboard instruments (frequency difference laser, Fourier transform, diode laser spectrometers,…) which nowadays provide data of precision far above than what could be achieved ten years ago.

Publié le :
DOI : 10.1016/j.crhy.2004.01.014
Keywords: Profils spectraux, Collisions, Spectres
Mot clés : Line shapes, Collisions, Spectra
Christian Boulet 1

1 Laboratoire de photophysique moléculaire, UPR3361 du CNRS et Université Paris Sud, Université Paris Sud, bâtiment 350, 91405 Orsay cedex, France
@article{CRPHYS_2004__5_2_201_0,
     author = {Christian Boulet},
     title = {Collisional effects on spectral line-shapes},
     journal = {Comptes Rendus. Physique},
     pages = {201--214},
     publisher = {Elsevier},
     volume = {5},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crhy.2004.01.014},
     language = {en},
}
TY  - JOUR
AU  - Christian Boulet
TI  - Collisional effects on spectral line-shapes
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 201
EP  - 214
VL  - 5
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.01.014
LA  - en
ID  - CRPHYS_2004__5_2_201_0
ER  - 
%0 Journal Article
%A Christian Boulet
%T Collisional effects on spectral line-shapes
%J Comptes Rendus. Physique
%D 2004
%P 201-214
%V 5
%N 2
%I Elsevier
%R 10.1016/j.crhy.2004.01.014
%G en
%F CRPHYS_2004__5_2_201_0
Christian Boulet. Collisional effects on spectral line-shapes. Comptes Rendus. Physique, Volume 5 (2004) no. 2, pp. 201-214. doi : 10.1016/j.crhy.2004.01.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.01.014/

[1] F. Niro, Etudes théoriques et expérimentales des profils collisionnels dans les centres et ailes des bandes infrarouges de CO2. Applications à la simulation et à l'inversion de spectres atmosphériques, Ph.D. thesis Orsay, 2003

[2] L.S. Rothman; C.P. Rinsland; A. Goldman; S.T. Massie; D.P. Edwards; J.M. Flaud; A. Perrin; C. Camy-Perret; V. Dana; J.Y. Mandin; J. Schroeder; A. McCann; R.R. Gamache; R.B. Wattson; K. Yoshino; K. Chance; K. Jucks; L.R. Brown; V. Nemtchinov; P. Varanasi The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation), J. Quant. Spectrosc. Radiat. Transfer, Volume 60 (1998), pp. 665-710 (1996 edition)

[3] N. Jacquinet-Husson; E. Arié; J. Ballard; A. Barbe; G. Bjoraker; B. Bonnet; L.R. Brown; C. Camy-Perret; J.P. Champion; A. Chédin; A. Chursin; C. Clerbaux; G. Duxbury; J.M. Flaud; N. Fourrié; A. Fayt; G. Graner; J.C. Hilico; J. Hillman; G. Lefèvre; E. Lellouch; S.N. Mikhaïlenlo; O.V. Naumenko; V. Nemtchinov; D.A. Newhern; A. Nikitin; J. Orphal; A. Perrin; D.C. Reuter; C.P. Rinsland; L. Rosenmann; L.S. Rothman; N.A. Scott; J. Selby; L.N. Sinitsa; J.M. Sirota; K.M. Smith; V.G. Tyuterev; R.H. Tipping; S. Urban; P. Varanasi; M. Weber The 1997 spectroscopic GEISA databank, J. Quant. Spectrosc. Radiat. Transfer, Volume 62 (1999), pp. 205-254

[4] U. Fano Pressure broadening as a prototype of relaxation, Phys. Rev., Volume 131 (1963), pp. 259-268

[5] A. BenReuven Impact broadening of microwave spectra, Phys. Rev., Volume 145 (1966), pp. 7-22

[6] D. Robert; J. Bonamy Short range forces effects in semi classical molecular line broadening calculations, J. Phys., Volume 40 (1979), pp. 923-943

[7] J.-L. Domenech; D. Bermejo; J.-P. Bouanich Pressure lineshift and broadening coefficients in the 2ν3 band of 16O12C32S, J. Mol. Spectrosc., Volume 200 (2000), pp. 266-276

[8] F. Rohart; J.-M. Colmont; G. Wlodarczak; J.-P. Bouanich N2 and O2 broadening coefficients and profiles for millimeter lines of 14N2O, J. Mol. Spectrosc., Volume 222 (2003), pp. 159-171

[9] J.-P. Bouanich; J. Salem; H. Aroui; J. Walrand; G. Blanquet H2 broadening coefficients in the ν2 and ν4 bands of PH3, J. Quant. Spectrosc. Radiat. Transfer, Volume 84 (2004), pp. 184-205

[10] M. Lepère; G. Blanquet; J. Wlarand; J.-P. Bouanich K-dependence of broadening coefficients for CH3F–N2 and for other systems involving a symmetric top molecule, J. Mol. Struct., Volume 517 (2000), pp. 493-502

[11] G. Blanquet; J. Wlarand; J.-P. Bouanich Diode-laser measurements of N2-broadening coefficients in the ν7 band of C2H4, J. Mol. Spectrosc., Volume 201 (2000), pp. 56-61

[12] J.-P. Bouanich; G. Blanquet; J. Wlarand; M. Lepere H2-broadening coefficients in the ν7 of ethylene by diode-laser spectroscopy, J. Mol. Spectrosc., Volume 218 (2003), pp. 22-27

[13] S.P. Neshyba; R.R. Gamache Improved line broadening coefficients for assymetric rotor molecules: application to ozone perturbed by nitrogen, J. Quant. Spectrosc. Radiat. Transfer, Volume 50 (1993), pp. 443-453

[14] R.R. Gamache; D. Lynch; S.P. Neshyba New developments in the theory of pressure-broadening and pressure-shifting of spectral lines of H2O: The complex Robert–Bonamy formalism, J. Quant. Spectrosc. Radiat. Transfer, Volume 59 (1998), pp. 319-335

[15] R.R. Gamache; J.M. Hartmann Collisional parameters of H2O lines: effects of vibration, J. Quant. Spectrosc. Radiat. Transfer, Volume 83 (2004), pp. 119-147

[16] S.P. Neshyba; D. Lynch; R. Gamache; T. Gabard; J.-P. Champion Pressure-induced widths and shifts of the ν4 band of methane, J. Chem. Phys., Volume 101 (1994), pp. 9412-9421

[17] T. Gabard Calculated helium broadened line parameters in the ν4 band of 13CH4, J. Quant. Spectrosc. Radiat. Transfer, Volume 59 (1998), pp. 287-302

[18] L. Fejard; T. Gabard; J.-P. Champion Calculated line broadening coefficients in the ν2 band of CH3D perturbed by helium, J. Mol. Spectrosc., Volume 219 (2003), pp. 88-97

[19] A.D. Bykov; N.N. Laurent'eva; L.N. Sinitsa Resonance functions of the theory of broadening and shift of lines for actual trajectories, Atmos. Oceanic Opt., Volume 5 (1992), pp. 728-730

[20] J. Buldyreva; J. Bonamy; D. Robert Semi classical calculations with exact trajectory for N2 rovibrational Raman line widths at temperatures below 300 K, J. Quant. Spectrosc. Radiat. Transfer, Volume 62 (1999), pp. 321-343

[21] J. Buldyreva; S. Benech; M. Chrysos Infrared nitrogen perturbed NO line widths in a temperature range of atmospheric interest: an extension of the exact trajectory model, Phys. Rev. A, Volume 63 (2000), p. 012708

[22] W.B. Neilsen; R.G. Gordon; W.B. Neilsen; R.G. Gordon II – Application to HCl–Argon, J. Chem. Phys., Volume 58 (1973), pp. 4131-4148

[23] J.M. Hartmann; C. Boulet Line shape parameters for HF in a bath of argon as a test of classical path models, J. Chem. Phys., Volume 113 (2000), pp. 9000-9010

[24] C. Boulet, P.M. Flaud, J.M. Hartmann, Infrared lines collisional parameters of HCl in Argon. Measurements and classical path calculation, J. Chem. Phys., in press

[25] R. Shafer; R.G. Gordon Quantum scattering theory of rotational relaxation and spectral line shapes in H2–He gas mixtures, J. Chem. Phys., Volume 58 (1973), pp. 5422-5443

[26] F. Mc Guire; D.J. Kouri Quantum mechanical close coupling approach to molecular collisions. The jz-conserving coupled-states approximation, J. Chem. Phys., Volume 60 (1974), pp. 2488-2499

[27] C.F. Roche; A.S. Dickinson; J.M. Hutson A failing of coupled states calculations for inelastic and pressure broadening cross-sections: calculations on CO2–Ar, J. Chem. Phys., Volume 111 (1999), pp. 5824-5828

[28] F. Thibault; R.Z. Martinez; J.L. Domenech; D. Bermejo; J.P. Bouanich Raman and infrared linewidths of CO in Ar, J. Chem. Phys., Volume 117 (2002), pp. 2523-2531

[29] R.Z. Martinez; J.L. Domenech; D. Bermejo; F. Thibault; J.P. Bouanich; C. Boulet Close coupling calculations for rotational relaxation of CO in Argon. Accuracy of energy corrected sudden scaling procedures and comparison with experimental data, J. Chem. Phys., Volume 119 (2003), pp. 10563-10574

[30] D.R. Flower; G. Bourmis; J.M. Launay Molcol: a programm for solving atomic and molecular collisions problem, Comput. Phys. Commun., Volume 13 (2000), pp. 187-201

[31] J.M. Hutson, S. Green, Molscat computer code, version 14 (1994), distributed by Collaborative Computational Project n6 of the U.K. Science and Engineering Research Council

[32] C. Luo; R. Wehr; J.R. Drummond; A.D. May; F. Thibault; J. Boissoles; J.M. Launay; C. Boulet; J.P. Bouanich; J.M. Hartmann Shifting and broadening in the fundamental band of CO highly diluted in He and Ar: a comparison with theory, J. Chem. Phys., Volume 115 (2001), pp. 2198-2206

[33] S. Green; J. Hutson Spectral line shape parameters for HF in a bath of Ar are accurately predicted by a potential inferred from spectra of the Van Der Waals dimer, J. Chem. Phys., Volume 100 (1994), pp. 891-898

[34] F. Thibault; B. Calil; J. Buldyreva; M. Chrysos; J.M. Hartmann; J.P. Bouanich Experimental and theoretical CO2–Ar pressure broadening cross sections and their temperature dependence, Phys. Chem. Chem. Phys., Volume 3 (2001), pp. 3924-3933

[35] C.F. Roche; J.M. Hutson; A. Dickinson Calculations of line width and shift cross sections for HCl in Ar, J. Quant. Spectrosc. Radiat. Transfer, Volume 53 (1995), pp. 153-164

[36] M.M. Beaky; T.M. Goyette; F.C. De Lucia Pressure broadening and line shift measurements of CO in collision with helium from 1 to 600 K, J. Chem. Phys., Volume 105 (1996), pp. 3994-4104

[37] C.D. Ball; M. Mengel; F.C. De Lucia; D.E. Woon Quantum scattering calculations for H2S–He between 1 and 600 K in comparison with pressure broadening, shift, and time resolved double resonance experiments, J. Chem. Phys., Volume 111 (1999), pp. 8893-8903

[38] M. Thachuk; C.E. Chuaqui; R.J. Leroy Line widths and shifts of very low temperatures CO in He: a challenge for theory or experiment?, J. Chem. Phys., Volume 105 (1996), pp. 4005-4014

[39] F. Thibault; J.M. Launay; R. Moszynski; A.W. Mantz; C. Claveau; A. Henry; A. Valentin Broadening of the R(0) and P(2) lines of 13CO fundamental in collisions with He atoms from 12 to 300 K: measurements and comparison with close-coupling calculations, 17th Colloquium on High Resolution Molecular Spectroscopy, Nijmgen, The Netherlands, 9–13 September, 2001 (paper L28)

[40] A. Levy; N. Lacome; C. Chackerian Collisional line mixing, Spectroscopy of the Earth Atmosphere and Interstellar Medium, Academic Press, New York, 1992, pp. 261-337

[41] S. Green Calculation of pressure broadened spectral line shapes including collisional transfer of intensity (W.A. Wakeman, ed.), Status and Future Development in Transport Properties, Kluver Academic, New York, 1992

[42] T. Dreier; G. Schiff; A.A. Suvernev Collisional effects in Q branch CARS spectra of N2 and O2 at high pressure and high temperature, J. Chem. Phys., Volume 100 (1994), pp. 6275-6289

[43] C.P. Rinsland; L.L. Strow Line mixing effects in solar occultation spectra of the lawer atmosphere: measurements and comparisons with the calculations for the 1932 cm−1 CO2 Q branch, Appl. Opt., Volume 28 (1989), pp. 457-464

[44] J. Boissoles; F. Thibault; J.L. Domenech; D. Bermejo; C. Boulet; J.M. Hartmann Temperature dependence of line mixing effects in the stimulated Raman Q branch of CO2 in He: a further test of a close coupling calculations, J. Chem. Phys., Volume 115 (2001), pp. 7420-7428

[45] G. Blanquet; J. Walrand; J.M. Hartmann; J.P. Bouanich Simple modelling of Q branch absorption. III pressure temperature and perturber dependences in the 2ν6Q branch of 12CH35ClF2 (HCFC-22), J. Quant. Spectrosc. Radiat. Transfer, Volume 55 (1996), pp. 289-305

[46] L.L. Strow; D.E. Tobin; S.E. Hannon A compilation of first order line mixing coefficients for CO2 Q-branches, J. Quant. Spectrosc. Radiat. Transfer, Volume 52 (1994), pp. 281-294

[47] L. Bonamy; F. Emond Rotational angular momentum relaxation mechanisms in the energy corrected sudden scaling theory, Phys. Rev. A, Volume 51 (1995), pp. 1235-1240

[48] T. Boissoles; F. Thibault; C. Boulet Line mixing effects in the 15 μm Q-branches of CO2 in Helium: a theoretical analysis, J. Quant. Spectrosc. Radiat. Transfer, Volume 56 (1996), pp. 835-853

[49] A.E. De Pristo; S.T. Augustin; R. Ramaswamy; H. Rabitz Quantum number and energy scaling for nonreactive collisions, J. Chem. Phys., Volume 71 (1979), pp. 850-865

[50] S. Green Rotational excitation of symmetric top molecules by collisions with atoms. II – Infinite order sudden approximation, J. Chem. Phys., Volume 70 (1979), pp. 816-829

[51] S. Green Pressure broadening and line coupling in bending bands of CO2, J. Chem. Phys., Volume 90 (1989), pp. 3603-3614

[52] F. Niro, C. Boulet, J.M. Hartmann, Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I – Model and laboratory measurements, J. Quant. Spectrosc. Radiat. Transfer, in press

[53] R. Rodrigues; K.W. Jucks; N. Lacome; G. Blanquet; J. Walrand; W.A. Traub; B. Khalil; R. Le Doucen; A. Valentin; C. Camy-Peyret; J. Bonamy; J.M. Hartmann Model, software, and database for computation of ine mixing effects in infrared Q branches of atmospheric CO2: I – Symmetric isotopomers, J. Quant. Spectrosc. Radiat. Transfer, Volume 61 (1999), pp. 153-184

[54] K.W. Jucks; R. Rodrigues; R. Le Doucen; C. Claveaux; J.M. Hartmann Model, software and database for computation of line mixing effects in infrared Q branches of atmospheric CO2: II – Minor and assymmetric isotopomers, J. Quant. Spectrosc. Radiat. Transfer, Volume 63 (1999), pp. 31-48

[55] J.M. Hartmann; J.P. Bouanich; K.W. Jucks; Gh. Blanquet; J. Walrand; D. Bermelo; J.L. Domenech; N. Lacome Line-mixing effects in N2O Q branches: model, laboratory, and atmospheric spectra, J. Chem. Phys., Volume 110 (1999), pp. 1959-1968

[56] S. Hadded; F. Thibault; P.M. Flaud; H. Aroui; J.M. Hartmann Experimental and theoretical study of line mixing in NH3 spectra : I – Scaling analysis of parallel bands perturbed by He, J. Chem. Phys., Volume 116 (2002), pp. 7544-7557

[57] S. Hadded; F. Thibault; P.M. Flaud; H. Aroui; J.M. Hartmann Experimental and theoretical study of line mixing in NH3 spectra: II – Effect of the perturber in parallel bands, J. Chem. Phys., Volume 120 (2004), p. 217

[58] D. Pieroni; Nguyen-Van-Thanh; C. Brodbeck; C. Claveau; A. Valentin; J.M. Hartmann; T. Gabard; J.P. Champion; D. Bermejo; J.L. Domenech Experimental and theoretical study of line mixing in methane spectra: I – The N2-broadened ν3 band at room temperature, J. Chem. Phys., Volume 110 (1999), pp. 7717-7732

[59] D. Pieroni; Nguyen-Van-Thanh; C. Brodbeck; C. Claveau; A. Valentin; J.M. Hartmann; T. Gabard; J.P. Champion; D. Bermejo; J.L. Domenech Experimental and theoretical study of line mixing in methane spectra: IV – Influence of the vibrational transition and of temperature, J. Chem. Phys., Volume 113 (2000), pp. 5766-5783

[60] D. Pieroni; J.M. Hartmann; C. Camy-Peyret; P. Jeseck; S. Payan Influence of line mixing on absorption by CH4 in atmospheric balloon-borne spectra near 3.3 μm, J. Quant. Spectrosc. Radiat. Transfer, Volume 68 (2001), pp. 117-133

[61] A. Deepak; T.D. Wilkerson; L.M. Ruhuke Atmospheric water vapor, Proceedings of the International Workshop on Atmospheric Water Vapor, Colorado, 1979, Academic Press, 1980

[62] S. De Souza-Machado; L.L. Strow; D. Tobin; S. Hannon Improved atmospheric radiance calculations using CO2 P/R branch line mixing, Proc. SPIE Satellite Remote Sensing of Clouds and the Atmosphere, Volume 3867 (1999), pp. 188-195

[63] L. Strow; S. Hannon; S. De Souza-Machado; H. Motteler; D. Tobin An overview of the AIRS radiative transfer model, IEEE Trans. Geosci. Remote Sensing, Volume 41 (2003), pp. 303-313

[64] J.B. Pollack; J.B. Dalton; D. Grinspoon; R.B. Wattson; R. Freddman; D. Crisp; D.A. Allen; B. Bezard; C. DeBergh; L.P. Giver; Q. Ma; R.H. Tipping Near infrared light from Venus' nightside: a spectroscopic analysis, Icarus, Volume 103 (1993), pp. 1-42

[65] P.W. Rosenkranz Pressure broadening of rotational bands. I. A statistical theory, J. Chem. Phys., Volume 83 (1985), pp. 6139-6144

[66] P.W. Rosenkranz Water vapor microwave continuum absorption: a comparison of measurements and models, Errata, Radio Sci., Volume 33 (1998), pp. 919-928

[67] Q. Ma; R.H. Tipping The averaged density matrix in the coordinate representation: application to the calculation of the far wing line shapes for H2O, J. Chem. Phys., Volume 111 (1999), pp. 5909-5921

[68] Q. Ma; R.H. Tipping The density matrix of H2O–N2 in the coordinate representation: a Monte Carlo calculation of the far wing line shape, J. Chem. Phys., Volume 112 (2000), pp. 574-584

[69] Q. Ma; R.H. Tipping The frequency detuning correction and the asymmetry of line shapes: the far wings of H2O–H2O, J. Chem. Phys., Volume 116 (2002), pp. 4102-4115

[70] Q. Ma; R.H. Tipping Water vapor millimeter wave foreign continuum: a Lanczos calculation in the coordinate representation, J. Chem. Phys., Volume 117 (2002), pp. 10581-10596

[71] Q. Ma; R.H. Tipping A simple analytical parametrization for the water vapor millimeter wave foreign continuum, J. Quant. Spectrosc. Radiat. Transfer, Volume 82 (2003), pp. 517-553

[72] M.O. Bulanin; A.B. Dokuchaev; M.V. Tonkov; N.N. Filippo Influence of line interference on the vibration–rotation band shape, J. Quant. Spectrosc. Radiat. Transfer, Volume 31 (1984), pp. 521-543

[73] J. Boissoles; C. Boulet; X. Bruet Ab initio lineshape cross sections: on the need of off-the-energy shell calculations, J. Chem. Phys., Volume 116 (2002), pp. 7537-7543

[74] L. Monchick The high energy asymptotic behavior of lineshape cross-sections and detailed balance, J. Chem. Phys., Volume 95 (1991), pp. 5047-5055

[75] Q. Ma; R.H. Tipping; C. Boulet; J.P. Bouanich Theoretical far wing line shape and absorption for high temperature CO2, Appl. Opt., Volume 38 (1999), pp. 599-604

[76] A.P. Kouzov Rotational relaxation matrix for fast non-Markovian collisions, Phys. Rev. A, Volume 60 (1999), pp. 2931-2939

[77] J.V. Buldyreva; L. Bonamy Non-Markovian energy corrected sudden model for the rototranslational spectrum of N2, Phys. Rev. A, Volume 60 (1999), pp. 370-376

[78] L. Bonamy; J.V. Buldyreva Non-Markovian far wing rotational Raman spectrum from translational modeling, Phys. Rev. A, Volume 63 (2001), pp. 1-6

[79] S. Benech; F. Rachet; M. Chrysos; J. Buldyreva; L. Bonamy On far wing Raman profiles by CO2, J. Raman Spectrosc., Volume 33 (2002), pp. 934-940

[80] A.P. Kouzov; K.G. Tokhadze; S.S. Utkina Buffer gas effect on the rotovibrational intensity distribution: analysis of possible mechanisms, Eur. Phys. J. D, Volume 12 (2000), pp. 153-159

[81] R. Berman; P.M. Sinclair; A.D. May; J.R. Drumond Spectral profiles for atmospheric absorption by isolated lines: a comparison of model spectra with P and R branch lines of CO in N2 and Ar, J. Mol. Spectrosc., Volume 198 (1999), pp. 283-290

[82] A.S. Pine Collisional narrowing of HF fundamental band spectral lines by Neon and Argon, J. Mol. Spectrosc., Volume 82 (1980), pp. 435-448

[83] A.S. Pine; T. Gabard Speed dependent broadening and line mixing in CH4 perturbed by Ar and N2 from multi spectrum fits, J. Quant. Spectrosc. Radiat. Transfer, Volume 66 (2000), pp. 69-92

[84] E.W. Smith; J. Cooper; W.R. Chappell; T. Dillon An impact theory for Doppler and pressure broadening. I – General theory, J. Quant. Spectrosc. Radiat. Transfer, Volume 11 (1971), pp. 1547-1565

[85] P. Joubert; X. Bruet; J. Bonamy; D. Robert; F. Chaussard; X. Michaut; R. Saint-Loup; H. Berger H2 vibrational spectral signatures in binary and ternary mixtures: theoretical model, simulation and application to CARS thermometry in high pressure flames, C. R. Acad. Sci. Paris, Ser. IV (2001), pp. 989-1000

[86] L. Galatry Simultaneous effect of Doppler and foreign gas broadening on spectral lines, Phys. Rev., Volume 122 (1961), pp. 1218-1223

[87] S.G. Rautian; I.I. Sobelman The effect of collisions on the Doppler broadening of spectral lines, Usp. Fiz. Nauk, Volume 90 (1966), p. 701

[88] P. Joubert; J. Bonamy; D. Robert; J.L. Domenech; D. Bermejo A partially correlated strong collision model for velocity- and state-changing collisions. Application to Ar-broadened HF rovibrational line shape, J. Quant. Spectrosc. Radiat. Transfer, Volume 61 (1999), pp. 519-531

[89] B. Lance; D. Robert Correlation effect in spectral line shape from the Doppler to the collision regime, J. Chem. Phys., Volume 111 (1999), pp. 789-792

[90] D. Robert; P. Joubert; B. Lance A velocity-memory model for the spectral line shape from the Doppler to the collisional regime, J. Mol. Struct., Volume 517–518 (2000), pp. 393-405

[91] F. Chaussard; X. Michaut; H. Berger; P. Joubert; B. Lance; J. Bonamy; D. Robert Collisional effects on spectral line shape from the Doppler to the collisional regime: a rigourous test of an unified approach, J. Chem. Phys., Volume 112 (2000), pp. 158-166

[92] F. Chaussard; R. Saint-Loup; H. Berger; P. Joubert; X. Bruet; J. Bonamy; D. Robert Speed-dependent line profile: a test of a unified model from the Doppler to the collisional regime for molecule–molecule collisions, J. Chem. Phys., Volume 113 (2000), pp. 4951-4956

[93] P.N.M. Hoang; P. Joubert; D. Robert Speed dependent line shape models analysis from molecular dynamics simulations. I – The collision regime, Phys. Rev. A, Volume 89 (2002), p. 012507

[94] P. Joubert; P.N.M. Hoang; L. Bonamy; D. Robert Speed-dependent line shape models analysis from molecular dynamics simulations. The collisional confinement narrowing regime, Phys. Rev. A, Volume 66 (2002), p. 042508

[95] A.S. Pine; R. Ciurylo Multispectrum fits of Ar-broadened HF with a generalized asymmetric lineshape: effects of correlation, hardness, speed dependence and collision duration, J. Mol. Spectrosc., Volume 208 (2001), pp. 180-187

[96] L. Demeio; S. Green; L. Monchick Effects of velocity changing collisions on line shapes of HF in Ar, J. Chem. Phys., Volume 102 (1995), pp. 9160-9166

[97] R. Wehr; A. Vitou; R. Ciurylo; F. Thibault; J.R. Drummond; A.D. May Spectral line shape of the P(2) transition in CO–Ar: uncorrelated ab-initio calculation, Phys. Rev. A, Volume 66 (2002), p. 062502

[98] L. Frommhold Collision Induced Absorption in Gases, Cambridge Monographs in Atomic, Molecular, and Chemical Physics, Cambridge University Press, 1993

[99] J. Boissoles; R.H. Tipping; C. Boulet Theoretical study of the collision induced fundamental absorption spectra of N2–N2 pairs for temperatures between 77 and 297 K, J. Quant. Spectrosc. Radiat. Transfer, Volume 51 (1994), pp. 615-627

[100] G. Moreau; J. Boissoles; C. Boulet; R.H. Tipping; Q. Ma Theoretical study of the collision induced fundamental absorption spectra of O2–O2 pairs for temperatures between 193 and 273 K, J. Quant. Spectrosc. Radiat. Transfer, Volume 64 (2000), pp. 87-107

[101] W. Meyer; L. Frommhold Collision induced rototranslational spectra of H2–He from an accurate ab-initio dipole moment surface, Phys. Rev. A, Volume 34 (1986), pp. 2771-2779

[102] M. Gustafsson; L. Frommhold; W. Meyer Infrared absorption spectra by H2–He collisional complexes: the effect of the anisotropy of the interaction potential, J. Chem. Phys., Volume 113 (2000), pp. 3641-3650

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

History and future of the molecular spectroscopic databases

Laurence S. Rothman; Nicole Jacquinet-Husson; Christian Boulet; ...

C. R. Phys (2005)


Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment

Charles E. Miller; Linda R. Brown; Robert A. Toth; ...

C. R. Phys (2005)


A review of remote sensing techniques and related spectroscopy problems

Sébastien Payan; Jérôme de La Noë; Alain Hauchecorne; ...

C. R. Phys (2005)