Comptes Rendus
Spectroscopy and planetary atmospheres/Spectroscopie et atmosphères planétaires
History and future of the molecular spectroscopic databases
[Histoire et avenir des banques de données spectroscopiques moléculaires]
Comptes Rendus. Physique, Volume 6 (2005) no. 8, pp. 897-907.

On présente tout d'abord un bref historique et une revue du développement de quelques banques de données spectroscopiques moléculaires. Il s'agit de compilations des paramètres spectroscopiques nécessaires au calcul du coefficient d'absorption des espèces moléculaires que l'on rencontre dans les codes de transferts radiatifs. Le sondage de l'atmosphère terrestre a, par ailleurs, beaucoup progressé dans les dernières années, avec comme conséquence une demande accrue aux banques de données d'étendre leur couverture, aussi bien en termes d'espèces moléculaires, de domaine spectral mais aussi de précision. On présente dans cet article, quelques problèmes d'actualité illustrant diverses lacunes des banques actuelles (positions des raies, intensités, profils spectraux, …) ainsi que quelques pistes d'évolutions futures.

A brief history and review of the development of some molecular spectroscopic databases is presented. Such databases are compilations of spectroscopic parameters whose principal purpose is to provide the necessary molecular absorption input for transmission and radiance codes. Remote sensing of the terrestrial atmosphere has advanced significantly in recent years, and this has placed greater demands on the compilations in terms of accuracy, additional species, and spectral coverage. This paper discusses current pressing issues, such as the deficiencies in line positions, intensities, and line shape, as well as the directions of future enhancements.

Publié le :
DOI : 10.1016/j.crhy.2005.09.001
Keywords: Spectroscopic database, Molecular spectroscopy, Line shape, Absorption parameters, Infrared cross-sections, HITRAN, GEISA, MIPAS
Mot clés : Banques de données spectroscopiques, Spectroscopie moléculaire, Profil spectral, Paramètres d'absorption, Sections efficaces (infrarouge), HITRAN, GEISA, MIPAS
Laurence S. Rothman 1 ; Nicole Jacquinet-Husson 2 ; Christian Boulet 3, 4 ; Agnès M. Perrin 3

1 Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, 60 Garden St, Cambridge MA 02138, USA
2 École polytechnique, laboratoire de météorologie dynamique, 91128 Palaiseau, France
3 Universités Paris 12 et 7, laboratoire interuniversitaire de systèmes atmosphériques (LISA), 61, avenue du Général de Gaulle, 94010 Créteil, France
4 Laboratoire de photophysique moléculaire, CNRS, université Paris-sud, 91405 Orsay, France
@article{CRPHYS_2005__6_8_897_0,
     author = {Laurence S. Rothman and Nicole Jacquinet-Husson and Christian Boulet and Agn\`es M. Perrin},
     title = {History and future of the molecular spectroscopic databases},
     journal = {Comptes Rendus. Physique},
     pages = {897--907},
     publisher = {Elsevier},
     volume = {6},
     number = {8},
     year = {2005},
     doi = {10.1016/j.crhy.2005.09.001},
     language = {en},
}
TY  - JOUR
AU  - Laurence S. Rothman
AU  - Nicole Jacquinet-Husson
AU  - Christian Boulet
AU  - Agnès M. Perrin
TI  - History and future of the molecular spectroscopic databases
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 897
EP  - 907
VL  - 6
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.09.001
LA  - en
ID  - CRPHYS_2005__6_8_897_0
ER  - 
%0 Journal Article
%A Laurence S. Rothman
%A Nicole Jacquinet-Husson
%A Christian Boulet
%A Agnès M. Perrin
%T History and future of the molecular spectroscopic databases
%J Comptes Rendus. Physique
%D 2005
%P 897-907
%V 6
%N 8
%I Elsevier
%R 10.1016/j.crhy.2005.09.001
%G en
%F CRPHYS_2005__6_8_897_0
Laurence S. Rothman; Nicole Jacquinet-Husson; Christian Boulet; Agnès M. Perrin. History and future of the molecular spectroscopic databases. Comptes Rendus. Physique, Volume 6 (2005) no. 8, pp. 897-907. doi : 10.1016/j.crhy.2005.09.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.09.001/

[1] R.A. McClatchey, W.S. Benedict, S.A. Clough, D.E. Burch, R.F. Calfee, K. Fox, L.S. Rothman, J.S. Garing, AFCRL Atmospheric Absorption Line Parameters Compilation, AFCRL-Technical Report-0096 (1973)

[2] A. Chédin; N. Husson; N.A. Scott Une banque de données pour l'étude des phénomènes de transfert radiatif dans les atmosphères planétaires: la banque GEISA, Bulletin d'Information du Centre de Données Stellaires (France), Volume 22 (1982), p. 121

[3] R.L. Poynter; H.M. Pickett; H.M. Pickett; R.L. Poynter; E.A. Cohen; M.L. Delitsky; J.C. Pearson; H.S.P. Müller Submillimeter, millimeter, and microwave spectral line catalog, J. Quant. Spectrosc. Radiat. Transfer, Volume 24 (1985), pp. 2235-2240

[4] L.R. Brown; C.B. Farmer; C.P. Rinsland; R.A. Toth Molecular line parameters for the atmospheric trace molecule spectroscopy experiment, Appl. Opt., Volume 26 (1987), pp. 5154-5182

[5] C.B. Farmer, O.F. Raper, F.G. O'Callaghan, Final Report on the First Flight of the Atmos Instrument during the Spacelab-3 mission, April 29 through May 6 1985, JPL Publication 87-32

[6] K. Chance; K.W. Jucks; D.G. Johnson; W.A. Traub The Smithsonian Astrophysical Observatory Database SAO92, J. Quant. Spectrosc. Radiat. Transfer, Volume 52 (1998), pp. 447-457

[7] J.-M. Flaud, C. Piccolo, B. Carli, A spectroscopic database for MIPAS, in: Proc. of Envisat Validation Workshop, Frascati, Italy, 9–13 December 2002, ESA (August 2003) SP-531

[8] D.G. Feist The Bernese Atmospheric Multiple Catalog Access Tool (BEAMCAT): a tool for users of popular spectral line catalogs, J. Quant. Spectrosc. Radiat. Transfer, Volume 85 (2004), pp. 57-97

[9] H.S.P. Müller; F. Schlöder; J. Stutzki; G. Winnewisser The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists, J. Molec. Structure, Volume 742 (2005), pp. 215-227

[10] L.S. Rothman; R.R. Gamache; A. Goldman; L.R. Brown; R.A. Toth; H.M. Pickett; R.L. Poynter; J.-M. Flaud; C. Camy-Peyret; A. Barbe; N. Husson; C.P. Rinsland; M.A.H. Smith The HITRAN database: 1986 edition, Appl. Opt., Volume 26 (1987), pp. 4058-4097

[11] L.S. Rothman; C.P. Rinsland; A. Goldman; S.T. Massie; D.P. Edwards; J.-M. Flaud; A. Perrin; C. Camy-Peyret; V. Dana; J.-Y. Mandin; J. Schroeder; A. McCann; R.R. Gamache; R.B. Wattson; K. Yoshino; K. Chance; K. Jucks; L.R. Brown; V. Nemtchinov; P. Varanasi The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition, J. Quant. Spectrosc. Radiat. Transfer, Volume 60 (1998), pp. 665-710

[12] L.S. Rothman; D. Jacquemart; A. Barbe; D.C. Benner; M. Birk; L.R. Brown; M. Carleer; C. Chackerian; K. Chance; L.H. Coudert; V. Dana; V.M. Devi; J.-M. Flaud; R.R. Gamache; A. Goldman; J.-M. Hartmann; K.W. Jucks; A.G. Maki; J.-Y. Mandin; S.T. Massie; J. Orphal; A. Perrin; C.P. Rinsland; M.A.H. Smith; J. Tennyson; R.N. Tolchenov; R.A. Toth; J. Vander Auwera; P. Varanasi; G. Wagner The HITRAN 2004 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, Volume 96 (2005), pp. 139-204

[13] A. Chedin; A.N. Scott The impact of spectroscopic parameters on the composition of the Jovian atmosphere, discussed in connection with recent laboratory, Earth and planetary observation programs, J. Quant. Spectrosc. Radiat. Transfer, Volume 32 (1984), pp. 453-461

[14] L.L. Strow; D. Reuter Effect of line mixing on atmospheric brightness temperatures near 15 μm, Appl. Opt., Volume 27 (1988), pp. 872-878

[15] D.P. Edwards; L.L. Strow Spectral line shape. Considerations for limb temperatures sounders, J. Geophys. Res., Volume 96 (1991), pp. 20858-20868

[16] F. Niro; F. Hase; C. Camy-Peyret; S. Payan; J.M. Hartmann Spectra calculations in central and wing region of CO2 IR bands between 10 and 20 μm. II: Atmospheric solar occultation spectra, J. Quant. Spectrosc. Radiat. Transfer, Volume 90 (2005), pp. 43-59

[17] F. Niro; T. Von Clarmann; K. Jucks; J.M. Hartmann Spectra calculations in central and wing region of CO2 IR bands between 10 and 20 μm. III: Atmospheric emission spectra, J. Quant. Spectrosc. Radiat. Transfer, Volume 90 (2005), pp. 61-76

[18] L.L. Strow; D.C. Tobin; W.W. McMillan; S.E. Hannon; W.L. Smith; H.E. Revercomb; R.O. Knuteson Impact of a new water vapor continuum and lineshape model on observed high resolution infrared radiances, J. Quant. Spectrosc. Radiat. Transfer, Volume 59 (1998), pp. 303-317

[19] N. Jacquinet-Husson; N.A. Scott; A. Chédin; K. Garceran; R. Armante; A.A. Chursin; A. Barbe; M. Birk; L.R. Brown; C. Camy-Peyret; C. Claveau; C. Clerbaux; P.F. Coheur; V. Dana; L. Daumont; M.R. Debacker-Barilly; J.-M. Flaud; A. Goldman; A. Hamdouni; M. Hess; D. Jacquemart; K. Köpke; J.Y. Mandin; S. Massie; S. Mikhailenko; V. Nemtchinov; A. Nikitin; D. Newnham; A. Perrin; V.I. Perevalov; L. Régalia-Jarlot; A. Rublev; F. Schreier; L. Schult; K.M. Smith; S.A. Tashkun; J.L. Teffo; R.A. Toth; Vl.G. Tyuterev; J. Vander Auwera; P. Varanasi; G. Wagner The 2003 edition of the GEISA/IASI spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, Volume 95 (2005), pp. 429-467

[20] C. Boulet Collisional effects on spectral lineshapes, C. R. Physique, Volume 5 (2004), pp. 201-214 (A review, through a few examples, of the state of the art in the field of molecular line shapes may be found in)

[21] G. Wagner; M. Birk; R.R. Gamache; J.M. Hartmann Collisional parameters of H2O lines: effects of temperature, J. Quant. Spectrosc. Radiat. Transfer, Volume 92 (2005), pp. 211-230

[22] R.R. Gamache; J.M. Hartmann Collisional parameters of H2O lines: effects of vibration, J. Quant. Spectrosc. Radiat. Transfer, Volume 83 (2004), pp. 119-147

[23] D. Jacquemart; R.R. Gamache; L.S. Rothman Semi-empirical calculation of air-broadened halfwidths and air pressure-induced frequency shifts of water–vapor absorption lines, J. Quant. Spectrosc. Radiat. Transfer, Volume 96 (2005), pp. 205-239

[24] M.V. Devi; D.C. Benner; M.A.H. Smith; C.P. Rinsland Air- and N2-broadening coefficients and pressure-shift coefficients in the 12C16O2 laser bands, J. Quant. Spectrosc. Radiat. Transfer, Volume 59 (1998), pp. 137-149

[25] J. Bonamy; D. Robert; C. Boulet Simplified models for the temperature dependence of linewidths at elevated temperatures and application to CO broadened by Ar and N2, J. Quant. Spectrosc. Radiat. Transfer, Volume 31 (1984), pp. 23-24

[26] C. Boulet, J.P. Bouanich, J.M. Hartmann, Unpublished results

[27] J.M. Hartmann, Unpublished results

[28] N.A. Scott A direct method of computation of transmission function of an inhomogeneous gaseous medium: description of the method and influence of various factors, J. Quant. Spectrosc. Radiat. Transfer, Volume 14 (1974), pp. 691-707

[29] N.A. Scott; A. Chedin A fast line-by-line method for atmospheric absorption computations: The automatized atmospheric absorption atlas, J. Appl. Meteor., Volume 20 (1981), pp. 556-564

[30] R. Rodrigues; K.W. Jucks; N. Lacome; G. Blanquet; J. Walrand; W.A. Traub; B. Khalil; R. Le Doucen; A. Valentin; C. Camy-Peyret; J.M. Hartmann Model, software and database for computation of line mixing effects in IR Q branches of atmospheric CO2. I—Symmetric isotopomers, J. Quant. Spectrosc. Radiat. Transfer, Volume 61 (1999), pp. 153-184

[31] K.W. Jucks; R. Rodrigues; R. Le Doucen; C. Claveau; W.A. Traub; J.M. Hartmann Model, software and database for computation of line mixing effects in IR Q branches of atmospheric CO2. II—Minor and asymmetric isotopomers, J. Quant. Spectrosc. Radiat. Transfer, Volume 63 (1999), pp. 31-48

[32] F. Niro; C. Boulet; J.M. Hartmann Spectra calculations in central and wing region of CO2 IR bands between 10 and 20 μm. I—Model and laboratory measurements, J. Quant. Spectrosc. Radiat. Transfer, Volume 88 (2004), pp. 483-498

[33] S.A. Tjemkes; T. Patterson; R. Rizzi; M.W. Shephard; S.A. Clough; M. Matricardi; J.D. Haigh; M. Höpfner; S. Payan; A. Trotsenko; N. Scott; P. Rayer; J.P. Taylor; C. Clerbaux; L.L. Strow; S. DeSouza-Machado; D. Tobin; R. Knuteson The ISSWG line by line inter-comparison experiment, J. Quant. Spectrosc. Radiat. Transfer, Volume 77 (2003), pp. 433-453

[34] H. Tran, T. Gabard, F. Hase, T. Von Clarmann, C. Camy-Peyret, S. Payan, J.M. Hartmann, Model, software and database for line mixing effects in the ν3 and ν4 bands of CH4 and tests using laboratory and planetary measurements. I—N2 (and air) broadening and the Earth atmosphere, J. Quant. Spectrosc. Radiat. Transfer, submitted for publication

[35] J.M. Hartmann; J.P. Bouanich; K.W. Jucks; G. Blanquet; J. Walrand; D. Bermejo; J.L. Domenech; N. Lacome Line mixing effects in N2O Q branches: model, laboratory and atmospheric spectra, J. Chem. Phys., Volume 110 (1999), pp. 1959-1968

[36] M.Y. Tretyakov; M.A. Koshelev; V.V. Dorovskikh; D.S. Makarov; P.W. Rosenkranz 60-GHz oxygen band: precise broadening and central frequencies of fine structure lines, absolute absorption profile at atmospheric pressure and revision of mixing coefficients, J. Mol. Spectrosc., Volume 231 (2005), pp. 1-14

[37] J.G. Cormier; R. Ciurylo; J.R. Drummond Cavity ringdown measurements of the IR water vapor continuum, J. Chem. Phys., Volume 116 (2002), pp. 1030-1034

[38] Q. Ma; R.H. Tipping The averaged density matrix in the coordinate representation: application to the calculation of the far wing lineshapes of H2O, J. Chem. Phys., Volume 111 (1999), pp. 5909-5921

[39] Q. Ma; R.H. Tipping A simple analytical parameterization for the water vapor millimetre wave foreign continuum, J. Quant. Spectrosc. Radiat. Transfer, Volume 82 (2003), pp. 517-531

[40] G.P. Stiller; T. Von Clarmann; B. Finke; N. Glatthor; F. Hase; M. Höpfner; A. Linden Sensitivity of trace gas abundances retrievals from IR limb emission spectra to simplifying approximations in radiative transfer modelling, J. Quant. Spectrosc. Radiat. Transfer, Volume 72 (2002), pp. 249-280

[41] S.A. Clough The water vapor continuum and its role in remote sensing, Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series, vol. 2, Optical Society of America, Washington, DC, February 1995 , pp. 76-78

[42] F. Thibault; V. Menoux; R. Le Doucen; L. Rosenmann; J.M. Hartmann; C. Boulet Infrared collision induced absorption by O2 near 6.4 μm for atmospheric applications: measurements and empirical modelling, Appl. Opt., Volume 36 (1997), pp. 563-567

[43] W.J. Lafferty; A.M. Solodov; A. Weber; W.B. Olson; J.M. Hartmann Infrared collision induced absorption by N2 near 4.3 μm for atmospheric applications: measurements and empirical modelling, Appl. Opt., Volume 35 (1996), pp. 5911-5917

[44] B. Barret; D. Hurtmans; M.R. Carleer; M. De Mazièere; E. Mahieu; P.-F. Coheur Line narrowing effect on the retrieval of HF and HCl vertical profiles from ground-based FTIR measurements, J. Quant. Spectrosc. Radiat. Transfer, Volume 95 (2005), pp. 499-519

[45] A. Henry; D. Hurtmans; M. Margottin-Maclou; A. Valentin Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2, J. Quant. Spectrosc. Radiat. Transfer, Volume 56 (1996), pp. 647-671

[46] J.F. d'Eu; B. Lemoine; F. Rohart Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles, J. Mol. Spectrosc., Volume 212 (2002), pp. 96-110

[47] L. Bonamy; H. Tran; P. Joubert; D. Robert Memory effects in speed-changing collisions and their consequences for spectral lineshapes. II—From the collision to the Doppler regime, Eur. Phys. J. D, Volume 31 (2004), pp. 459-467

[48] J.-M. Flaud; A. Perrin; J. Orphal; Q. Kou; P.-M. Flaud; Z. Dutliewicz; C. Piccolo New analysis of the ν5+ν9ν9 hot band of HNO3, J. Quant. Spectrosc. Radiat. Transfer, Volume 77 (2003), pp. 355-364

[49] J.-M. Flaud; C. Piccolo; B. Carli; A. Perrin; L.H. Coudert; J.L. Teffo; L.R. Brown Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment, J. Atmos. Ocean Opt., Volume 16 (2003), pp. 172-182

[50] J.-M. Flaud; G. Wagner; M. Birk; C. Camy-Peyret; C. Claveau; M.R. De Backer-Barrilly; A. Barbe; C. Piccolo Ozone absorption around 10 μm, J. Geophys. Res. D, Volume 108 (2003), p. ACH7-1-3

[51] B. Picquet-Varrault; J. Orphal; J.-F. Doussin; P. Carlier; J.-M. Flaud Laboratory intercomparison of the ozone absorption coefficients in the mid-infrared (10 μm) and ultraviolet (300–350 nm) spectral regions, J. Phys. Chem. A, Volume 109 (2005), pp. 1008-1014

[52] J. Orphal; K. Chance Ultraviolet and visible absorption cross-sections for HITRAN, J. Quant. Spectrosc. Radiat. Transfer, Volume 82 (2003), pp. 491-504

[53] D.G. Dufour, J.R. Drummond, C.T. McElroy, C. Midwinter, P.F. Bernath, K.A. Walker, W.F.J. Evans, E. Puckrin, C. Nowlan, Intercomparison of simultaneously obtained infrared (4.8 μm) and visible (515–715 nm) ozone spectra using ACE-FTS and MAESTRO, J. Chem. Phys. A, submitted for publication

[54] A. Perrin, C. Puzzarini, J.-M. Colmont, C. Verdes, G. Wlodarczak, G. Cazzoli, S. Buehler, J.-M. Flaud, J. Demaison, Molecular line parameters for the “MASTER” (Millimeter wave Acquisitions for Stratosphere/Troposphere Exchange Research) database, J. Atmospheric Chemistry, in press

[55] M. Endemann, Michelson Interferometer for Passive Atmospheric Sounding experiment, (MIPAS) instrument concept and performance, in: Proceedings of the European Symposium on Atmospheric Measurement from Space, edited by ESA, vol. 1, 1999, pp. 23–29

[56] F. Menccaraglia, G. Bianchini, A. Boscaleri, B. Carli, S. Ceccherini, J.-M. Flaud, A. Perrin, Validation of MIPAS satellite measurements of HNO3 with comparison of rotational and vibrational spectroscopy, J. Geophys. Res., submitted for publication

[57] A. Goldman; C.P. Rinsland; A. Perrin; J.-M. Flaud HNO3 line parameters: 1996 HITRAN update and new results, J. Quant. Spectrosc. Radiat. Transfer, Volume 60 (1998), pp. 851-861

[58] P. Carlier; H. Hannachi; G. Mouvier The chemistry of carbonyl compounds in the atmosphere—a review, Atmos. Environ., Volume 20 (1986), pp. 2079-2099

[59] F. Arnold; V. Burger; B. Droste-Fanke; F. Grimm; A. Krieger; J. Schneider; T. Stilp Acetone in the upper troposphere and lower stratosphere: Impact on trace gases and aerosols, Geophys. Res. Lett., Volume 24 (1997), pp. 3017-3020

[60] D.J. Jacob; B.-D. Field; E.M. Jin; I. Bey; Li Qinbin; J.A. Logan; R.M. Yantosca; A.B. Singh Atmospheric budget of acetone, J. Geophys. Res. D, Volume 107 (2002), p. ACH5-1-ACH5-19

[61] W.L. Chameides; D.D. Davis Aqueous phase source of formic acid in clouds, Nature L, Volume 304 (1983), pp. 427-429

[62] Y. Gbadebo Adewuyi; S.-Y. Cho; R.-P. Tsay; G.R. Carmichael Importance of formaldehyde in cloud chemistry, Atmos. Environ., Volume 18 (1984), pp. 2413-2420

[63] G.A. Dawson; J.C. Farmer Soluble atmospheric trace gases in the southwestern United States, 2. Organic species HCHO, HCOOH, CH3COOH, J. Geophys. Res. D, Volume 9 (1988), pp. 52000-52006

[64] P.L. Hanst; N.W. Wong; J. Bragin A long path infrared study of Los Angeles smog, Atmos. Environ., Volume 16 (1981), pp. 969-981

[65] T. Reiner; O. Mohler; F. Arnold Measurements of acetone, acetic acid, and formic acid in the northern midlatitude upper troposphere and lower stratosphere, J. Geophys. Res. D, Volume 104 (1999), pp. 13943-13952

[66] R.J. Yokelson; J.G. Goode; D.E. Ward; R.A. Susott; R.E. Babbitt; D.D. Wade; I. Bertschi; D.W.T. Griffith; W.M. Hao Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne infrared spectroscopy, J. Geophys. Res. D, Volume 104 (1999), pp. 30109-30125

[67] W.F. Wang; A. Stevenson; D.C. Reuter; J.M. Sirota Absolute band intensities in the ν19, ν23 (530 cm−1) and ν7 (777 cm−1) of acetone ((CH3)2CO) from 232 to 295 K, Spectrochim. Act. A, Volume 56 (2000), pp. 1111-1116

[68] W.F. Wang; A. Stevenson; D.C. Reuter; J.M. Sirota Absolute band intensities of acetone ((CH3)2CO) in the infrared region of 830–3200 cm−1 at low and room temperatures, Spectrochim. Act. A, Volume 57 (2001), pp. 1603-1610

[69] P.M. Chu; F.R. Guenther; R.L. Rhoderick; W.J. Lafferty The NIST quantitative infrared database, J. Res. Natl. Inst. Stand. Technol., Volume 104 (1999), pp. 59-81

[70] R. Beer; T.A. Glavich; D.M. Rider Tropospheric emission spectrometer for the Earth Observing System's AURA satellite, Appl. Opt., Volume 40 (2001), pp. 2356-2367

[71] J.-M. Flaud; J. Orphal; G. Bergametti; C. Deniel; T. von Clarmann; F. Friedl-Vallon; T. Steck; H. Fischer; H. Bovensmann; J.P. Burrows; M. Carlotti; M. Ridolfi; L. Palchetti The Geostationary Fourier Imaging Spectrometer (GeoFIS) as part of the Geostationary Tropospheric Pollution Explorer (GeoTROPE) mission: objectives and capabilities, Adv. Space Res., Volume 34 (2004), pp. 688-693

[72] J. Vander Auwera, K. Didriche, A. Perrin, F. Keller, J.-M. Flaud, Absolute intensities in the ν6 band of trans-formic acid, paper RB11, in: 59th Ohio State University International Symposium on Molecular Spectroscopy, June 2004

[73] C.P. Rinsland; A. Goldman Infrared spectroscopic measurements of tropospheric trace gases, Appl. Opt., Volume 31 (1992), pp. 6969-6971

[74] A. Fried; S. Sewell; B. Henry; B.P. Wert; T. Gilpin Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde, J. Geophys. Res. D, Volume 102 (1997), pp. 6253-6266

[75] Y. Mine; N. Melander; D. Richter; D.G. Lancaster; K.P. Petrov; R.F. Curl; F.K. Tittel Detection of formaldehyde using mid-infrared difference-frequency generation, Appl. Phys. B, Volume 65 (1997), pp. 771-774

[76] H. Dahnke; G. von Basum; K. Kleinermanns; P. Hering; M. Murts Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy, Appl. Phys. B, Volume 75 (2002), pp. 311-316

[77] L.R. Brown; R. Hunt; A.S. Pine Wavenumbers, line strengths, and assignments in the Doppler-limited spectrum of formaldehyde from 2700 to 3000 cm−1, J. Mol. Spectrosc., Volume 75 (1979), pp. 406-428

[78] C.D. Rodgers Inverse Methods for Atmospheric Sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics, vol. 2, World Scientific Publ., February 2000

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A review of remote sensing techniques and related spectroscopy problems

Sébastien Payan; Jérôme de La Noë; Alain Hauchecorne; ...

C. R. Phys (2005)


Collisional effects on spectral line-shapes

Christian Boulet

C. R. Phys (2004)


Infrared spectroscopy of planetary atmospheres

Pierre Drossart

C. R. Phys (2005)