[Cartographie des régions moléculaires hydrophobes par RMN du xénon polarisé par laser dissous]
Les régions moléculaires hydrophobes peuvent être localisées par l'approche appelée SPINOE qui consiste en la détection des transferts d'aimantation du xénon polarisé par laser dissous vers les protons proches du soluté. Nous rapportons l'étude de la dynamique présente lors de cette expérience et discutons les conséquences sur son implémentation. Nous montrons que la connaissance des propriétés physico-chimiques du système permet de choisir les meilleures conditions expérimentales afin d'être capable d'identifier les transferts d'aimantation via des expériences de RMN à deux dimensions. Nous illustrons ce résultat par le premier spectre de SPIROE-TOCSY.
Molecular hydrophobic cavities can be mapped thanks to the detection of magnetization transfer from laser polarized xenon to nearby protons. This so called SPINOE approach is described. The study of the spin dynamics during this experiment and its consequences on the practical implementation are detailed. We show that thanks to the knowledge of the physical properties of the system, it becomes possible to choose the best experimental conditions in order to be able to assign magnetization transfer through two dimensional NMR methods. As an illustration, the first 2D SPIROE-TOCSY experiment is reported.
Mots-clés : RMN, Xénon polarisé par laser, SPINOE, Cavité hydrophobe de protéines
Lionel Dubois 1 ; Patrick Berthault 1 ; J.Gaspard Huber 1 ; Hervé Desvaux 1
@article{CRPHYS_2004__5_3_305_0, author = {Lionel Dubois and Patrick Berthault and J.Gaspard Huber and Herv\'e Desvaux}, title = {Mapping hydrophobic molecular regions using dissolved laser-polarized xenon {NMR}}, journal = {Comptes Rendus. Physique}, pages = {305--313}, publisher = {Elsevier}, volume = {5}, number = {3}, year = {2004}, doi = {10.1016/j.crhy.2004.02.003}, language = {en}, }
TY - JOUR AU - Lionel Dubois AU - Patrick Berthault AU - J.Gaspard Huber AU - Hervé Desvaux TI - Mapping hydrophobic molecular regions using dissolved laser-polarized xenon NMR JO - Comptes Rendus. Physique PY - 2004 SP - 305 EP - 313 VL - 5 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2004.02.003 LA - en ID - CRPHYS_2004__5_3_305_0 ER -
%0 Journal Article %A Lionel Dubois %A Patrick Berthault %A J.Gaspard Huber %A Hervé Desvaux %T Mapping hydrophobic molecular regions using dissolved laser-polarized xenon NMR %J Comptes Rendus. Physique %D 2004 %P 305-313 %V 5 %N 3 %I Elsevier %R 10.1016/j.crhy.2004.02.003 %G en %F CRPHYS_2004__5_3_305_0
Lionel Dubois; Patrick Berthault; J.Gaspard Huber; Hervé Desvaux. Mapping hydrophobic molecular regions using dissolved laser-polarized xenon NMR. Comptes Rendus. Physique, Highly polarized nuclear spin systems and dipolar interactions in NMR, Volume 5 (2004) no. 3, pp. 305-313. doi : 10.1016/j.crhy.2004.02.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.02.003/
[1] J. Phys. Radium, 11 (1950), p. 225
[2] Phys. Rev. Lett., 5 (1960), pp. 373-375
[3] Rev. Mod. Phys., 69 (1997), pp. 629-642
[4] C. R. Acad. Sci. Paris, Ser. IIb, 324 (1997), pp. 691-700
[5] Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 12932-12936
[6] Phys. Rev. Lett., 66 (1991), pp. 580-583
[7] Catal. Rev. Sci. Eng., 41 (1999), pp. 115-225
[8] J. Phys. Chem. B, 103 (1999), pp. 8837-8841
[9] Langmuir, 18 (2002), pp. 5653-5656
[10] J. Mol. Biol., 322 (2002), pp. 425-440
[11] Protein Sci., 10 (2001), pp. 762-770
[12] Science, 270 (1995), pp. 1847-1848
[13] Science, 270 (1995), pp. 1848-1849
[14] Biochemistry, 23 (1984), pp. 2849-2857
[15] Prot. Struct. Funct. Gen., 30 (1998), pp. 61-73
[16] J. Mol. Biol., 302 (2000), pp. 955-977
[17] Nat. Struct. Biol., 4 (1997), pp. 396-404
[18] J. Appl. Crystallogr., 27 (1994), pp. 950-960
[19] Biochemistry, 21 (1982), pp. 6850-6857
[20] Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 9472-9475
[21] J. Am. Chem. Soc., 123 (2001), pp. 8616-8617
[22] J. Am. Chem. Soc., 121 (1999), pp. 9370-9377
[23] J. Magn. Reson., 150 (2001), pp. 1-8
[24] Science, 271 (1996), pp. 1848-1851
[25] J. Magn. Reson., 130 (1998), pp. 145-148
[26] Angew. Chem., 36 (1997), pp. 2368-2370
[27] J. Am. Chem. Soc., 121 (1999), pp. 3502-3512
[28] Eur. Phys. J. D, 12 (2000), pp. 289-296
[29] C. R. Acad. Sci. Sér. IV, 2 (2001), pp. 327-332
[30] Spin Temperature and Nuclear Magnetic Resonance in Solids, Oxford University Press, Oxford, 1971
[31] J. Phys. Chem. B, 108 (2004), pp. 767-773
[32] ChemPhysChem, 4 (2003), pp. 384-387
[33] Prog. NMR Spectrosc., 35 (1999), pp. 295-340
[34] Mol. Phys., 81 (1994), pp. 955-975
[35] Chem. Phys. Lett., 314 (1999), pp. 52-56
[36] J. Chem. Phys., 119 (2003), pp. 12231-12244
[37] A. Haase, J. Frahm, D. Matthaei, W. Hänicke, K.-D. Merboldt, 67 (1986) 258–266
[38] Ann. Rep. NMR Spectroscopy, 27 (1993), pp. 1-58
[39] J. Magn. Reson. A, 113 (1995), pp. 47-52
[40] J. Magn. Reson., 77 (1988), pp. 274-293
[41] Chem. Eur. J., 9 (2003), pp. 5784-5792
- Molecular Sensing with Host Systems for Hyperpolarized 129Xe, Molecules, Volume 25 (2020) no. 20, p. 4627 | DOI:10.3390/molecules25204627
- Non-linear liquid-state NMR, Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 70 (2013), p. 50 | DOI:10.1016/j.pnmrs.2012.11.001
- Spectral and temporal features of multiple spontaneous NMR-maser emissions, The European Physical Journal D, Volume 51 (2009) no. 3, p. 357 | DOI:10.1140/epjd/e2009-00027-7
- Observation of Noise‐Triggered Chaotic Emissions in an NMR‐Maser, ChemPhysChem, Volume 9 (2008) no. 10, p. 1395 | DOI:10.1002/cphc.200800113
- 1H and 129Xe NMR absorption line shapes in the presence of highly polarized and concentrated xenon solutions in high magnetic field, Journal of Magnetic Resonance, Volume 187 (2007) no. 1, p. 78 | DOI:10.1016/j.jmr.2007.04.003
- Xenon NMR Spectroscopy, Volume 57 (2006), p. 205 | DOI:10.1016/s0066-4103(05)57005-4
- NMR studies of chloroform@cryptophane-A and chloroform@bis-cryptophane inclusion complexes oriented in thermotropic liquid crystals, Solid State Nuclear Magnetic Resonance, Volume 29 (2006) no. 1-3, p. 104 | DOI:10.1016/j.ssnmr.2005.08.012
- Direct enhancement of any solution NMR signal using the distant dipolar fields created by highly polarized and concentrated nuclear spin systems, The European Physical Journal Applied Physics, Volume 36 (2006) no. 1, p. 25 | DOI:10.1051/epjap:2006107
- Dynamics of Xenon Binding Inside the Hydrophobic Cavity of Pseudo-Wild-type Bacteriophage T4 Lysozyme Explored through Xenon-Based NMR Spectroscopy, Journal of the American Chemical Society, Volume 127 (2005) no. 33, p. 11676 | DOI:10.1021/ja053074p
- Dissolution of laser-polarized xenon in benzene, Magnetic Resonance Imaging, Volume 23 (2005) no. 2, p. 315 | DOI:10.1016/j.mri.2004.11.041
- Probing the Hydrophobic Cavity of Lipid Transfer Protein from Nicotiana tabacum through Xenon-Based NMR Spectroscopy, Journal of the American Chemical Society, Volume 126 (2004) no. 48, p. 15738 | DOI:10.1021/ja046195i
- NMR Study of Optically Active Monosubstituted Cryptophanes and Their Interaction with Xenon, The Journal of Physical Chemistry A, Volume 108 (2004) no. 44, p. 9608 | DOI:10.1021/jp0472055
Cité par 12 documents. Sources : Crossref
Commentaires - Politique