The status of solutions to the ultra-high energy cosmic ray puzzle that involve particle physics beyond the standard model is reviewed. Signatures and experimental constraints are discussed for most proposals such as the Z burst model and topological defects (both allowed only as subdominant contributions), supermassive dark matter (no positive evidence from its key signatures galactic anisotropy and photon dominance), strongly interacting neutrinos or new primaries (no viable models known), and violation of Lorentz invariance (viable).
Nous présentons une revue des solutions proposées en réponse à l'énigme des rayons cosmiques ultra-énergétiques, faisant intervenir la physique des particules au-delà du Modèle Standard. Nous résumons les signatures et les contraintes expérimentales pour la plupart de ces modèles tels que : la désintégration du Z et les défauts topologiques (tous deux envisageables seulement en tant que modèles sub-dominants), matière noire supermassive (qu'aucune indication, telle l'anisotropie galactique et production dominante de photons, ne favorise), les neutrinos à interaction forte ou des particules nouvelles (pas de modèles viables connus), et la violation de l'invariance de Lorentz (viable).
Mots-clés : Coupure GZK, Neutrinos ultra-énergétiques, Modèle de désintégration du Z, Défauts topologiques, Matière Noire supermassive, Invariance de Lorentz (violation)
Michael Kachelrieß 1
@article{CRPHYS_2004__5_4_441_0, author = {Michael Kachelrie{\ss}}, title = {Status of particle physics solutions to the {UHECR} puzzle}, journal = {Comptes Rendus. Physique}, pages = {441--452}, publisher = {Elsevier}, volume = {5}, number = {4}, year = {2004}, doi = {10.1016/j.crhy.2004.03.015}, language = {en}, }
Michael Kachelrieß. Status of particle physics solutions to the UHECR puzzle. Comptes Rendus. Physique, Ultimate energy particles in the Universe, Volume 5 (2004) no. 4, pp. 441-452. doi : 10.1016/j.crhy.2004.03.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.03.015/
[1] S. Colgate, H. Lui, Non-Fermi acceleration, C. R. Physique (2004) in press
[2] JETP Lett., 16 (1966), p. 748
[3] T. Stanev, Propagation of high-energy cosmic rays, C. R. Physique (2004) in press
[4] et al. Astrophys. J., 81 (1998), p. 1163
[5] arXiv
|[6] Phys. Rev. D, 68 (2003), p. 043005
[7] Proc. of Neutrino-77, vol. 1 (M.A. Markov, ed.), 1977, p. 177
[8] et al. Astrophys. J., 494 (1998), p. 523
[9] arXiv
|[10] R.W. Clay, B.R. Dawson, G.J. Thornton, Directional reconstruction and anisotropy studies, C. R. Physique (2004), in press
[11] et al. Astropart. Phys., 13 (2000), p. 151
[12] Phys. Rev. D, 67 (2003), p. 092002
[13] arXiv
|[14] arXiv
|[15] Astrophys. J., 483 (1997), p. 1
[16] Phys. Rev. Lett., 85, 2000, p. 1154 (see also Phys. Rev. D, 63, 2001, pp. 023002) | arXiv
[17] Astrophys. J., 74 (2001), p. 445 (but see also Phys. Rev. D, 67, 2003, pp. 103005) | arXiv
[18] Astropart. Phys., 28 (1969), p. 423
[19] Phys. Lett. B, 82 (1998), p. 1366
[20] Astropart. Phys., 517 (1999), p. 725
[21] Phys. Rev. Lett., 89 (2002), p. 171802
[22] Phys. Rev. Lett., 84 (2000), p. 1378
[23] JCAP, 0305 (2003), p. 004
[24] Phys. Rev. D, 67 (2003), p. 023506
[25] arXiv
|[26] arXiv
|[27] arXiv
|[28] Phys. Lett. B, 429 (1998), p. 263
[29] Nucl. Phys. B, 62 (2000), p. 103006 | arXiv
[30] Phys. Rev. D, 87 (2001), p. 161602 (for recent criticism see V.S. Rychkov, Black hole production in particle collisions and higher curvature gravity) | arXiv
[31] Phys. Rev. Lett., 88 (2002), p. 021303
[32] Phys. Lett. B, 561 (2003), p. 191
[33] Phys. Lett. B, 574 (2003), p. 75
[34] JHEP, 0310 (2003), p. 008
[35] Phys. Rev. D, 63, 2001, p. 055001 | arXiv
[36] Rep. Prog. Phys., 58 (1994), p. 477
[37] Phys. Rep., 81 (1998), p. 2012
[38] Nucl. Phys. B, 224 (1983), p. 469
[39] Phys. Rev. D, 60 (1999), p. 083001
[40] Phys. Rev. Lett., 79 (1997), p. 5202
[41] Nucl. Phys. B, 595 (2001), p. 402
[42] arXiv
(Phys. Rev. D, in press) |[43] Phys. Rev. D, 63 (2001), p. 034007
[44] Phys. Rev. Lett., 79 (1997), p. 4302
[45] Phys. Atom. Nucl., 61 (1998), p. 1028
[46] JETP Lett., 59 (1999), p. 023501
[47] Phys. Rev. D, 58 (1998), p. 103503
[48] Phys. Lett. B, 247 (1990), p. 257
[49] Phys. Rev. D, 59 (1999), p. 047301
[50] Nucl. Phys. B, 614 (2001), p. 233
[51] Phys. Lett. B, 621 (2002), p. 495
[52] arXiv
|[53] arXiv
|[54] J. Phys. G, 28 (2002), p. 267
[55] Astrophys. J., 571 (2002), p. L117
[56] et al. Phys. Rev. Lett., 85 (2000), p. 2244
[57] Nucl. Phys. Proc. Suppl., 85 (2000), p. 324
[58] JETP Lett., 68 (1998), p. 107
[59] J. Phys. G, 12 (1986), p. 653
[60] Phys. Lett. B, 577 (2003), p. 1
[61] arXiv
|[62] Phys. Lett. B, 422 (1998), p. 163
[63] Nucl. Phys. Proc. Suppl. A, 75 (1999), p. 377
[64] Phys. Lett. B, 563 (2003), p. 132
[65] Phys. Lett. B, 486 (2000), p. 233 (see also the first work of Ref. [16])
[66] Phys. Rev. D, 65 (2002), p. 083004
[67] Phys. Lett. B, 564 (2003), p. 183
[68] Phys. Rev. D, 64 (2001), p. 096005
[69] JCAP, 0305 (2003), p. 005
[70] Astropart. Phys., 12 (2000), p. 277
[71] Nucl. Phys. B, 639 (2002), p. 241
[72] Phys. Rev. D, 59 (1999), p. 116008 (For a complete Lorentz-violating extension of the SM see Phys. Rev. D, 58, 1998, pp. 116002)
[73] Phys. Rev., 159 (1967), p. 1106
[74] Nature, 393 (1998), p. 763
[75] Prog. Theor. Phys., 15 (1972), p. 1051
[76] Astropart. Phys., 18 (2002), p. 89
Cited by Sources:
Comments - Policy