Comptes Rendus
Microfluidique et applications biologiques : enjeux et tendances
Comptes Rendus. Physique, Volume 5 (2004) no. 5, pp. 565-575.

Les systèmes d'analyse biologique fondés sur la microfluidique, encore appelés « laboratoires sur puces » ou « microsystèmes d'analyse totale », sont encore peu répandus mais constituent un domaine de recherche extrêmement actif. Ces systèmes devraient en effet permettre de développer dans un délai relativement bref à la fois des systèmes d'analyse à très haut débit peu coûteux et puissants pour accompagner la « révolution génomique », et des systèmes simples d'usage pour appliquer les progrès rapides de la génomique et de la biologie moléculaire dans les domaines de la santé et des biotechnologies. Dans cette revue, on présentera dans un premier temps le contexte biologique et médical dans lequel s'inscrit cette nouvelle thématique de recherche, puis on donnera quelques exemples de problématiques et de systèmes illustrant les tendances actuelles.

Bioanalytical systems based on microfluidics, also called “lab-on-chips” or “micro Total Analysis Systems (microTAS), are still not very common, but they represent a very challenging and fast-developing area of research. They bear the promise of developing in the near future low cost, powerful and high throughput systems for biological and medical research, in strong synergy with the genomic revolution. They should also provide the basis for simple, low cost and user friendly ‘point of care’ devices, to help the application of the rapid progress of molecular biology and genomics in the fields of diagnosis and biotechnology. In the present review, we recall the biological and medical context in which this research takes place, and we provide a few examples of present challenges and trends, and of devices and technologies presently under development.

Publié le :
DOI : 10.1016/j.crhy.2004.04.003
Mot clés : Microfluidique, Laboratoires sur puces
Keywords: Microfluidics, Lab-on-chips
Nicolas Minc 1 ; Jean-Louis Viovy 1

1 Institut Curie, UMR 168, 11, rue Pierre et Marie Curie, 75005 Paris, France
@article{CRPHYS_2004__5_5_565_0,
     author = {Nicolas Minc and Jean-Louis Viovy},
     title = {Microfluidique et applications biologiques : enjeux et tendances},
     journal = {Comptes Rendus. Physique},
     pages = {565--575},
     publisher = {Elsevier},
     volume = {5},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crhy.2004.04.003},
     language = {fr},
}
TY  - JOUR
AU  - Nicolas Minc
AU  - Jean-Louis Viovy
TI  - Microfluidique et applications biologiques : enjeux et tendances
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 565
EP  - 575
VL  - 5
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.04.003
LA  - fr
ID  - CRPHYS_2004__5_5_565_0
ER  - 
%0 Journal Article
%A Nicolas Minc
%A Jean-Louis Viovy
%T Microfluidique et applications biologiques : enjeux et tendances
%J Comptes Rendus. Physique
%D 2004
%P 565-575
%V 5
%N 5
%I Elsevier
%R 10.1016/j.crhy.2004.04.003
%G fr
%F CRPHYS_2004__5_5_565_0
Nicolas Minc; Jean-Louis Viovy. Microfluidique et applications biologiques : enjeux et tendances. Comptes Rendus. Physique, Volume 5 (2004) no. 5, pp. 565-575. doi : 10.1016/j.crhy.2004.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.04.003/

[1] A. Manz; N. Graber; H.M. Widmer Miniaturised total chemical analysis systems: a novel concept for chemical sensing, Sensors and Actuators B, Volume 1 (1990), p. 244

[2] D.J. Harrison; K. Fluri; K. Seiler; Z. Fan; C.S. Effenhauser; A. Manz Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science, Volume 261 (1993), pp. 895-897

[3] A. Manz; H. Becker Microsystem Technology in Chemistry and Life Science, Springer, Berlin, 1999

[4] M. Heller; A. Guttman Integrated Microfabricated Biodevices, Marcel Dekker, New York, 2001

[5] P. Tabelling Introduction à la la microfluidique, Belin, Paris, 2003

[6] D.R. Reyes; D. Iossifidis; P.-A. Auroux; A. Manz Micro total analysis systems. 1. Introduction, theory, and technology, Anal. Chem., Volume 74 (2002), pp. 2623-2636

[7] D.C. Duffy; J.C. McDonald; O.J.A. Schueller; G.M. Whitesides Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem., Volume 70 (1998), pp. 4974-4984

[8] B.H. Jo; L.M. Van Lerberghe; K.M. Motsegood; D.J. Beebe Three-dimensional micro-channel fabrication in polydimethylsiloxane(PDMS) elastomer, J. Microelectromech. Systems, Volume 9 (2000) no. 1, pp. 76-81

[9] G.M. Whitesides; E. Ostuni; S. Takayama; D.E. Ingber Soft lithography in biology and biochemistry, Annu. Rev. Biomed. Engrg., Volume 3 (2001), pp. 335-373

[10] G.H.W. Sanders; A. Manz Chip-based microsystems for genomic and proteomic analysis, Trends Anal. Chem., Volume 19 (2000) no. 6, pp. 364-378

[11] H.A. Stone; S. Kim Microfluidics: Basic Issues, Applications, and Challenges, AIChE J., Volume 47 (2001) no. 6, pp. 1250-1254

[12] G.M. Whitesides; A.D. Stroock Flexible methods for microfluidics, Phys. Today, Volume 54 (2001), pp. 42-48

[13] A. Manz; J.C.T. Eijkel Miniaturization and chip technology. What can we expect, Pure Appl. Chem., Volume 73 (2001) no. 10, pp. 1555-1561

[14] P.-A. Auroux; D. Iossifidis; D.R. Reyes; A. Manz Micro total analysis systems. 2. Analytical standard operations and applications, Anal. Chem., Volume 74 (2002), pp. 2637-2652

[15] J. Khandurina; A. Guttman Bioanalysis in microfluidic devices, J. Chrom. A, Volume 943 (2002), pp. 159-183

[16] T. Chòvan; A. Guttman Microfabricated devices in biotechnology and biochemical processing, Trends Biotech., Volume 20 (2002) no. 3, pp. 116-122

[17] D.J. Beebe; G.A. Mansing; G.M. Walker Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Engrg., Volume 4 (2002), pp. 261-286

[18] C.H. Hansen; S.R. Quake Microfluidics in structural biology, faster…better, Curr. Opin. Struct. Biol., Volume 13 (2003), pp. 538-544

[19] A. Dodge; K. Fluri; E. Verpoorte; N.F. de Rooij Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays, Anal. Chem., Volume 73 (2002), pp. 3400-3409

[20] T. Yang; S.-Y. Jung; H. Mao; P.S. Cremer Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays, Anal. Chem., Volume 73 (2001), pp. 165-169

[21] E. Verpoorte Microfluidic chips for clinical and forensic analysis, Electrophoresis, Volume 23 (2002), pp. 677-712

[22] K. Sato; M. Yamanaka; M. Tokeshi; K. Morishima; T. Kitamori Multichannel micro elisa system (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, San Diego, 2003, TRF, 2003, pp. 781-784

[23] M. Harada; K. Iwamoto; T. Kitamori; T. Sawada Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle analysis, Anal. Chem., Volume 65 (1993), pp. 2938-2940

[24] J. Baker; M. Strachan; K. Swartz; Y. Yurkovetsky; A. Rulison; C. Brooks; A. Kopf-Still Single molecule amplification in a continuous flow labchip device (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System 2003, vol. 2, San Diego, USA, 2003, pp. 1335-1339

[25] J.-L. Viovy Electrophoresis of DNA and other polyelectrolytes: physical mechanisms, Rev. Mod. Phys., Volume 72 (2000) no. 3, p. 72

[26] J.P. Landers Molecular diagnostics on electrophoretic microchips, Anal. Chem., Volume 75 (2003), pp. 2919-2927

[27] L. Mitnik; C. Heller; J. Prost; J.-L. Viovy Segregation in DNA solutions induced by electric fields, Science, Volume 267 (1995), pp. 219-222

[28] S. Magnusdottir; C. Heller; H. Isambert; J.-L. Viovy Electrohydrodynamically induced aggregation during constant and pulsed field capillary electrophoresis of DNA, Biopolymers, Volume 49 (1999), pp. 385-401

[29] W.D. Volkmuth; R.H. Austin DNA electrophoresis in microlithographic arrays, Nature, Volume 358 (1992), pp. 600-602

[30] T. Duke; R.H. Austin Microchips for sorting DNA (H. Flyvbjerg et al., eds.), Principles of Biological Systems: From Molecules to Species, Springer, New York, 1997, pp. 18-25

[31] C.F. Chou; O. Bakajin; S.W.P. Turner; T. Duke; S.S. Chan; E.C. Cox; H.G. Craighead; N. Darnton; J. Han; R.H. Austin Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation, Proc. Natl. Acad. Sci. USA, Volume 96 (1999), pp. 13762-13765

[32] J. Han; H.G. Craighead Separation of long DNA molecules in a microfabricated entropic trop array, Science, Volume 288 (2000), pp. 1026-1029

[33] M. Cabodi; S.W.P. Turner; H.G. Craighead Entropic recoil separation of long DNA molecules, Anal. Chem., Volume 74 (2002), pp. 5169-5174

[34] E.M. Lawrence; M.L. Ivery; G.A. Flores; J. Liu; J. Bibette; J. Richard Field-induced structure of confined ferrofluid emulsion, Int. J. Mod. Phys. B, Volume 8 (1994), pp. 2765-2777

[35] M. Ivey; J. Liu; Y. Zhu; S. Cutillas Magnetic-field-induced structural transitions in a ferrofluid emulsion, Phys. Rev. E, Volume 63 (2000), p. 011403

[36] P. Doyle; J. Bibette; A. Bancaud; J.-L. Viovy Self-assembled magnetic matrices for DNA separation chips, Science, Volume 295 (2002), p. 2237

[37] C. Fütterer, N. Minc, V. Bormuth, J.-H. Codarbox, P. Laval, J. Rossier, J.-L. Viovy, Lab on Chip, sous presse

[38] K.D. Dorfman, J.-L. Viovy, A semi-phenomenological model for the dispersion of DNA during electrophoresis in a microfluidic array posts, Phys. Rev. E, sous presse

[39] N. Minc, C. Fütterer, K.D. Dorfman, A. Bancaud, C. Gosse, C. Goubault, J.-L. Viovy, Rapid and quantitative microfluidic separation of DNA in self-assembled magnetic matrices, Anal. Chem., 2003, sous presse

[40] N. Minc; C. Fütterer; K.D. Dorfman; C. Gosse; J.-L. Viovy Fast separation of large DNA (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 2, 2003, TRF, San Diego, 2003, pp. 1311-1314

[41] H. Andersson; A. van den Berg Microfluidic devices for cellomics: a review, Sensors and Actuators B, Volume 92 (2003), pp. 315-325

[42] B. Schaack; B. Fouqué; S. Porte; S. Combe; A. Hennico; O. Filhol-Cochet; J. Reboud; M. Balakirev; F. Chatelain Cell culture in microdrops, a new format for cell on chip technology (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, 2003, TRF, San Diego, 2003, pp. 669-672

[43] B. Le Pioufle; P. Surbled; H. Nagay; H.S. Chun; Y. Murakami; E. Tamiya; H. Fujita Attachment of cells on Microsystems: Application to the Gene Transfection Transducers '99, Sendai (J) (1999), pp. 768-771

[44] M.A. McClain; C.T. Culbertson; S.C. Jacobson; J.M. Ramsey Flow cytometry of Escherichia coli on microfluidic devices, Anal. Chem., Volume 73 (2001), pp. 5334-5338

[45] M. Stelze; M. Dürr; G. Gradl; P. Geggier; A. Haage; R. Hagedorn; M. Jäger; J. Kentsch; T. Muller; A. Normann; T. Schnelle Separation, trapping, and analysis of biological nano-particles in biomems (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, 2003, TRF, San Diego, 2003, pp. 239-241

[46] C. Goubault; J.-L. Viovy; J. Bibette Capture of rare cells by magnetic filaments (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, 2003, TRF, San Diego, 2003, pp. 239-241

[47] T. Thorsen; S.J. Maerrkl; S.R. Quake Microfluidic large-scale integration, Science, Volume 298 (2002), pp. 580-584

[48] S.R. Quake Biological large scale integration (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, 2003, TRF, San Diego, 2003, pp. 1-4

[49] M.A. Unger; H.-P. Chou; T. Thorsen; A. Scherer; S.R. Quake Monolithic microfabricated valves and pumps by multiplayer soft lithography, Science, Volume 288 (2000), pp. 113-116

[50] R.H. Liu; J. Yang; R. Lenigk; J. Bonanno; P. Grodzinski; F. Zenhausern Self-contained, integrated biochip system for sample to answer genetic assays (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 2, 2003, TRF, San Diego, 2003, pp. 1319-1322

[51] R.H. Liu; J. Bonanno; R. Stevens; P. Grodinski Thermally actuated paraffin microvalves (Y. Baba; S. Shoji; A. van den Berg, eds.), Proceedings of Micro Total Analysis Systems 2002, Kluwer Academic, Dordrecht, 2002, pp. 163-165

[52] R.H. Liu; J. Bonanno; J. Yang; R. Druyor-Sanchez; P. Grodinski Hybridization enhancement using cavitation microstreaming, Anal. Chem., Volume 75 (2003), pp. 1911-1917

[53] R.F. Service Microchip arrays put DNA on the spot, Science, Volume 282 (1998), pp. 396-401

[54] E. Southern; K. Mir; M. Shchepinov Molecular interactions on microarrays, Nature Genetics, Microarray Suppl., Volume 21 (1999), pp. 5-9

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Biopuces pour le traitement de cellules vivantes : micromanipulation des cellules par voie électrique ou microfluidique

Bruno Le Pioufle; Marie Frénéa; Agnès Tixier

C. R. Phys (2004)


Microfluidique discrète et biotechnologie

Yves Fouillet; Jean-Luc Achard

C. R. Phys (2004)