[Microfluidics and biological applications: the stakes and trends]
Bioanalytical systems based on microfluidics, also called “lab-on-chips” or “micro Total Analysis Systems (microTAS), are still not very common, but they represent a very challenging and fast-developing area of research. They bear the promise of developing in the near future low cost, powerful and high throughput systems for biological and medical research, in strong synergy with the genomic revolution. They should also provide the basis for simple, low cost and user friendly ‘point of care’ devices, to help the application of the rapid progress of molecular biology and genomics in the fields of diagnosis and biotechnology. In the present review, we recall the biological and medical context in which this research takes place, and we provide a few examples of present challenges and trends, and of devices and technologies presently under development.
Les systèmes d'analyse biologique fondés sur la microfluidique, encore appelés « laboratoires sur puces » ou « microsystèmes d'analyse totale », sont encore peu répandus mais constituent un domaine de recherche extrêmement actif. Ces systèmes devraient en effet permettre de développer dans un délai relativement bref à la fois des systèmes d'analyse à très haut débit peu coûteux et puissants pour accompagner la « révolution génomique », et des systèmes simples d'usage pour appliquer les progrès rapides de la génomique et de la biologie moléculaire dans les domaines de la santé et des biotechnologies. Dans cette revue, on présentera dans un premier temps le contexte biologique et médical dans lequel s'inscrit cette nouvelle thématique de recherche, puis on donnera quelques exemples de problématiques et de systèmes illustrant les tendances actuelles.
Keywords: Microfluidics, Lab-on-chips
Nicolas Minc 1; Jean-Louis Viovy 1
@article{CRPHYS_2004__5_5_565_0, author = {Nicolas Minc and Jean-Louis Viovy}, title = {Microfluidique et applications biologiques : enjeux et tendances}, journal = {Comptes Rendus. Physique}, pages = {565--575}, publisher = {Elsevier}, volume = {5}, number = {5}, year = {2004}, doi = {10.1016/j.crhy.2004.04.003}, language = {fr}, }
Nicolas Minc; Jean-Louis Viovy. Microfluidique et applications biologiques : enjeux et tendances. Comptes Rendus. Physique, Microfluidics, Volume 5 (2004) no. 5, pp. 565-575. doi : 10.1016/j.crhy.2004.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.04.003/
[1] Miniaturised total chemical analysis systems: a novel concept for chemical sensing, Sensors and Actuators B, Volume 1 (1990), p. 244
[2] Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science, Volume 261 (1993), pp. 895-897
[3] Microsystem Technology in Chemistry and Life Science, Springer, Berlin, 1999
[4] Integrated Microfabricated Biodevices, Marcel Dekker, New York, 2001
[5] Introduction à la la microfluidique, Belin, Paris, 2003
[6] Micro total analysis systems. 1. Introduction, theory, and technology, Anal. Chem., Volume 74 (2002), pp. 2623-2636
[7] Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem., Volume 70 (1998), pp. 4974-4984
[8] Three-dimensional micro-channel fabrication in polydimethylsiloxane(PDMS) elastomer, J. Microelectromech. Systems, Volume 9 (2000) no. 1, pp. 76-81
[9] Soft lithography in biology and biochemistry, Annu. Rev. Biomed. Engrg., Volume 3 (2001), pp. 335-373
[10] Chip-based microsystems for genomic and proteomic analysis, Trends Anal. Chem., Volume 19 (2000) no. 6, pp. 364-378
[11] Microfluidics: Basic Issues, Applications, and Challenges, AIChE J., Volume 47 (2001) no. 6, pp. 1250-1254
[12] Flexible methods for microfluidics, Phys. Today, Volume 54 (2001), pp. 42-48
[13] Miniaturization and chip technology. What can we expect, Pure Appl. Chem., Volume 73 (2001) no. 10, pp. 1555-1561
[14] Micro total analysis systems. 2. Analytical standard operations and applications, Anal. Chem., Volume 74 (2002), pp. 2637-2652
[15] Bioanalysis in microfluidic devices, J. Chrom. A, Volume 943 (2002), pp. 159-183
[16] Microfabricated devices in biotechnology and biochemical processing, Trends Biotech., Volume 20 (2002) no. 3, pp. 116-122
[17] Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Engrg., Volume 4 (2002), pp. 261-286
[18] Microfluidics in structural biology, faster…better, Curr. Opin. Struct. Biol., Volume 13 (2003), pp. 538-544
[19] Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays, Anal. Chem., Volume 73 (2002), pp. 3400-3409
[20] Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays, Anal. Chem., Volume 73 (2001), pp. 165-169
[21] Microfluidic chips for clinical and forensic analysis, Electrophoresis, Volume 23 (2002), pp. 677-712
[22] Multichannel micro elisa system (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, San Diego, 2003, TRF, 2003, pp. 781-784
[23] Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle analysis, Anal. Chem., Volume 65 (1993), pp. 2938-2940
[24] Single molecule amplification in a continuous flow labchip device (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System 2003, vol. 2, San Diego, USA, 2003, pp. 1335-1339
[25] Electrophoresis of DNA and other polyelectrolytes: physical mechanisms, Rev. Mod. Phys., Volume 72 (2000) no. 3, p. 72
[26] Molecular diagnostics on electrophoretic microchips, Anal. Chem., Volume 75 (2003), pp. 2919-2927
[27] Segregation in DNA solutions induced by electric fields, Science, Volume 267 (1995), pp. 219-222
[28] Electrohydrodynamically induced aggregation during constant and pulsed field capillary electrophoresis of DNA, Biopolymers, Volume 49 (1999), pp. 385-401
[29] DNA electrophoresis in microlithographic arrays, Nature, Volume 358 (1992), pp. 600-602
[30] Microchips for sorting DNA (H. Flyvbjerg et al., eds.), Principles of Biological Systems: From Molecules to Species, Springer, New York, 1997, pp. 18-25
[31] Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation, Proc. Natl. Acad. Sci. USA, Volume 96 (1999), pp. 13762-13765
[32] Separation of long DNA molecules in a microfabricated entropic trop array, Science, Volume 288 (2000), pp. 1026-1029
[33] Entropic recoil separation of long DNA molecules, Anal. Chem., Volume 74 (2002), pp. 5169-5174
[34] Field-induced structure of confined ferrofluid emulsion, Int. J. Mod. Phys. B, Volume 8 (1994), pp. 2765-2777
[35] Magnetic-field-induced structural transitions in a ferrofluid emulsion, Phys. Rev. E, Volume 63 (2000), p. 011403
[36] Self-assembled magnetic matrices for DNA separation chips, Science, Volume 295 (2002), p. 2237
[37] C. Fütterer, N. Minc, V. Bormuth, J.-H. Codarbox, P. Laval, J. Rossier, J.-L. Viovy, Lab on Chip, sous presse
[38] K.D. Dorfman, J.-L. Viovy, A semi-phenomenological model for the dispersion of DNA during electrophoresis in a microfluidic array posts, Phys. Rev. E, sous presse
[39] N. Minc, C. Fütterer, K.D. Dorfman, A. Bancaud, C. Gosse, C. Goubault, J.-L. Viovy, Rapid and quantitative microfluidic separation of DNA in self-assembled magnetic matrices, Anal. Chem., 2003, sous presse
[40] Fast separation of large DNA (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 2, 2003, TRF, San Diego, 2003, pp. 1311-1314
[41] Microfluidic devices for cellomics: a review, Sensors and Actuators B, Volume 92 (2003), pp. 315-325
[42] Cell culture in microdrops, a new format for cell on chip technology (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, 2003, TRF, San Diego, 2003, pp. 669-672
[43] Attachment of cells on Microsystems: Application to the Gene Transfection Transducers '99, Sendai (J) (1999), pp. 768-771
[44] Flow cytometry of Escherichia coli on microfluidic devices, Anal. Chem., Volume 73 (2001), pp. 5334-5338
[45] Separation, trapping, and analysis of biological nano-particles in biomems (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, 2003, TRF, San Diego, 2003, pp. 239-241
[46] Capture of rare cells by magnetic filaments (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, 2003, TRF, San Diego, 2003, pp. 239-241
[47] Microfluidic large-scale integration, Science, Volume 298 (2002), pp. 580-584
[48] Biological large scale integration (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 1, 2003, TRF, San Diego, 2003, pp. 1-4
[49] Monolithic microfabricated valves and pumps by multiplayer soft lithography, Science, Volume 288 (2000), pp. 113-116
[50] Self-contained, integrated biochip system for sample to answer genetic assays (M.A. Northrup; K.F. Jensen; D.J. Harrison, eds.), Proceeding of Micro Total Analysis System, vol. 2, 2003, TRF, San Diego, 2003, pp. 1319-1322
[51] Thermally actuated paraffin microvalves (Y. Baba; S. Shoji; A. van den Berg, eds.), Proceedings of Micro Total Analysis Systems 2002, Kluwer Academic, Dordrecht, 2002, pp. 163-165
[52] Hybridization enhancement using cavitation microstreaming, Anal. Chem., Volume 75 (2003), pp. 1911-1917
[53] Microchip arrays put DNA on the spot, Science, Volume 282 (1998), pp. 396-401
[54] Molecular interactions on microarrays, Nature Genetics, Microarray Suppl., Volume 21 (1999), pp. 5-9
Cited by Sources:
Comments - Policy