Comptes Rendus
The viscoplastic behaviour of ice in polar ice sheets: experimental results and modelling
[Déformation viscoplastique de la glace polaire : résultats des expériences et modélisation]
Comptes Rendus. Physique, Volume 5 (2004) no. 7, pp. 699-708.

L'écoulement des calottes polaires dépend largement de la déformation viscoplastique de glaces anisotropes. Les mécanismes physiques contrôlant la déformation du cristal et du polycristal de glace sont discutés. Dans les conditions de faibles contraintes mises en jeu dans les calottes polaires, le paramètre de sensibilité à la contrainte prend une valeur légèrement inférieure à 2 et la déformation est dominée par le glissement des dislocations dans le plan de base. Le grossissement des grains et la recristallisation dynamique contribuent à réduire les inhomogénéités de déformation induites par les incompatibilités de déformation entre les grains. La technique de diffraction des rayons X durs est bien adaptée à l'analyse des gradients d'orientation dans les grains. L'analyse de la structure de la glace des carottes profondes extraites en Antarctique et au Groenland montre des variations importantes de la forme, de la taille et de l'orientation des grains. De fortes variations de la viscosité avec la profondeur sont donc attendues. Les modèles de déformation des polycristaux rendant compte de l'évolution des propriétés rhéologiques des glaces polaires sont discutés. Ces modèles doivent prédire et prendre en compte les hétérogénéités de contrainte et de vitesse de déformation dans les grains.

The slow motion of polar ice sheets is governed by the viscous deformation of anisotropic ices. Physical mechanisms controlling the deformation of ice crystal and polycrystal are reviewed. For the low stress conditions prevailing in ice sheets, the stress exponent of the flow law is lower than 2 and the deformation is dominated by the glide of dislocations on the basal plane. The mismatch of slip at grain boundaries induces large strain inhomogeneities partially relieved in ice sheets by grain growth and recrystallisation. The hard X-ray diffraction technique can be used to describe the orientation gradients within grains. The structure of ice along deep ice cores in Antarctica and Greenland exhibits significant changes in the shape, size and orientation of grains. A large variation of ice viscosity with depth is therefore expected. Polycrystal deformation models accounting for the changing rheological properties of polar ice are discussed. These models must predict and take into account the intracrystalline field heterogeneity.

Publié le :
DOI : 10.1016/j.crhy.2004.06.002
Keywords: Ice, Polar ice sheets, Creep, Dislocations, Textures
Mot clés : Glace, Calottes polaires, Fluage, Dislocations, Textures

Maurine Montagnat 1 ; Paul Duval 2

1 Laboratoire de thermodynamique et physico chimie des materiaux, BP 75, 38402 Saint Martin d'Hères cedex, France
2 Laboratoire de glaciologie et géophysique de l'environnement, BP 96, 38402 Saint Martin d'Hères cedex, France
@article{CRPHYS_2004__5_7_699_0,
     author = {Maurine Montagnat and Paul Duval},
     title = {The viscoplastic behaviour of ice in polar ice sheets: experimental results and modelling},
     journal = {Comptes Rendus. Physique},
     pages = {699--708},
     publisher = {Elsevier},
     volume = {5},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crhy.2004.06.002},
     language = {en},
}
TY  - JOUR
AU  - Maurine Montagnat
AU  - Paul Duval
TI  - The viscoplastic behaviour of ice in polar ice sheets: experimental results and modelling
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 699
EP  - 708
VL  - 5
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.06.002
LA  - en
ID  - CRPHYS_2004__5_7_699_0
ER  - 
%0 Journal Article
%A Maurine Montagnat
%A Paul Duval
%T The viscoplastic behaviour of ice in polar ice sheets: experimental results and modelling
%J Comptes Rendus. Physique
%D 2004
%P 699-708
%V 5
%N 7
%I Elsevier
%R 10.1016/j.crhy.2004.06.002
%G en
%F CRPHYS_2004__5_7_699_0
Maurine Montagnat; Paul Duval. The viscoplastic behaviour of ice in polar ice sheets: experimental results and modelling. Comptes Rendus. Physique, Volume 5 (2004) no. 7, pp. 699-708. doi : 10.1016/j.crhy.2004.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.06.002/

[1] C.J. Van der Veen Fundamentals of Glacier Dynamics, Balkema, Rotterdam, Brookfield, 1999 (462 pp)

[2] A.J. Payne; P. Huybrechts; A. Abe-Ouchi; R. Calov; J.L. Fastook; R. Greve; S.J. Marshall; I. Marsiat; C. Ritz; L. Tarasov; M.P.A. Thomassen Results from the EISMINT model intercomparison: the effects of thermomechanical coupling, J. Glaciol, Volume 46 (2000), pp. 227-238

[3] A.N. Salamatin, D.R. Malikova, Structural dynamics of an ice sheet in changing climate, Data of glaciological studies, Moscow 89 (2000) 112–128

[4] M. Montagnat; P. Duval Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallisation, Earth Planet. Sci. Lett, Volume 183 (2000), pp. 179-186

[5] M. Montagnat; P. Duval; P. Bastie; B. Hamelin; V.Ya Lipenkov Lattice distortions in ice crystals from the Vostok core (Antarctica) revealed by hard X-ray diffraction; implication in the deformation of ice at low stresses, Earth Planet. Sci. Lett, Volume 214 (2003), pp. 369-378

[6] J.R. Petit; J. Jouzel; D. Raynaud; N.I. Barkov; J.-M. Barnola; I. Basile; M. Bender; J. Chappellaz; M. Davis; G. Delaygue; M. Delmotte; V.M. Kotlyakov; M. Legrand; V.Y. Lipenkov; C. Lorius; L. Pépin; C. Ritz; E. Saltzman; M. Stievenard Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, Volume 399 (1999), pp. 429-436

[7] P. Duval; M.F. Ashby; I. Anderman Rate controlling processes in the creep of polycrystalline ice, J. Phys. Chem, Volume 87 (1983) no. 21, pp. 4066-4074

[8] R.B. Alley Flow law hypothesis for ice sheet modeling, J. Glaciol, Volume 38 (1992), pp. 441-446

[9] D.S. Russell-Head; W.F. Budd Ice-sheet flow properties derived from bore-hole shear measurements combined with ice-core studies, J. Glaciol, Volume 24 (1979), pp. 117-130

[10] P. Pimienta; P. Duval; V.Ya. Lipenkov Mechanical behaviour of anisotropic polar ice, Physical Basis of Ice Sheet Modelling, Vancouver, AIHS, vol. 170, 1987, pp. 57-66

[11] W.F. Budd; T.H. Jacka A review of ice rheology for ice sheet modelling, Cold. Reg. Sci. Technol, Volume 16 (1989), pp. 107-144

[12] L. Lliboutry Anisotropic, transversely isotropic nonlinear viscosity of rock ice and rheological parameters inferred from homogenization, Int. J. Plasticity, Volume 9 (1993), pp. 619-632

[13] N. Azuma A flow law for anisotropic ice and its application to ice sheets, Earth Planet. Sci, Volume 128 (1994), pp. 601-614

[14] O. Castelnau; P. Duval; R.A. Lebensohn; G.R. Canova Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: comparison with bound estimates, J. Geophys. Res, Volume 101 (1996) no. B6, pp. 13851-13868

[15] G. Gödert; K. Hutter Induced anisotropy in large ice shields: theory and its homogenization, Continuum Mech. Therm, Volume 10 (1998), pp. 293-318

[16] O. Gagliardini; J. Meyssonnier Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal, J. Geophys. Res, Volume 104 (1999) no. B8, pp. 17797-17809

[17] C.J.L. Wilson; Y. Zhang Comparison between experiment and computer modelling of plane-strain simple-shear ice deformation, J. Glaciol, Volume 40 (1994), pp. 46-55

[18] P. Mansuy; A. Philip; J. Meyssonnier Localization of deformation in polycrystalline ice, J. Physique IV, Volume 11 (2001), pp. 267-274

[19] P. Gilormini; M.V. Nebozhyn; P. Ponte-Castañeda Accurate estimates for the creep behavior of hexagonal polycrystals, Acta Mater, Volume 49 (2001), pp. 329-337

[20] M. Bornert; R. Masson; P. Ponte Castañeda; A. Zaoui Second-order estimates for the effective behavior of viscoplastic polycrystalline materials, J. Mech. Phys. Solids, Volume 49 (2001), pp. 2737-2764

[21] A. Higashi; S. Koinuma; S. Mae Bending creep of ice single crystals, Jpn. J. Appl. Phys, Volume 4 (1965), pp. 575-582

[22] U. Nakaya, Mechanical properties of single crystals of ice; U.S. Army Snow Ice Permafrost Research Establishment, Research Report 28 (1958) 1–46

[23] P. Mansuy, Contribution à l'étude du comportement viscoplastique d'un multicristal: hétérogénéité de la deformation, experiences et modèles, Thèse de l'Université Joseph Fourier, Grenoble, 2001

[24] B. Hamelin, P. Bastie P. Duval, J. Chévy, M. Montagnat, Lattice distortion and basal slip bands in deformed ice crystals revealed by hard X-ray diffraction, J. Phys. C, in press

[25] H. Neuhauser Slip-line formation (F.R.N. Nabarro, ed.), Dislocations in Solids, vol. 6, North-Holland, Amsterdam, 1984, pp. 319-430

[26] J. Weiss; J.R. Grasso Acoustic emission in single crystals of ice, J. Phys. Chem, Volume 101 (1997), pp. 6113-6117

[27] A. Higashi; A. Fukuda; T. Hondoh; K. Goto; S. Amakai Dynamical dislocation processes in ice crystal (T. Susuki; K. Ninomiya; S. Takeuchi, eds.), Proceedings of Yamada Conference IX, University of Tokyo Press, Tokyo, 1985, pp. 511-515

[28] S. Ahmad; R.W. Whitworth Dislocation motion in ice: a study by X-ray synchrotron topography, Philos. Mag. A, Volume 57 (1988), pp. 749-766

[29] T. Hondoh; H. Iwamatsu; S. Mae Dislocation mobility for non basal glide in ice measured by in situ X-ray topography, Philos. Mag. A, Volume 62 (1990), pp. 89-102

[30] A. Fukuda; T. Hondoh; A. Higashi Dislocation mechanisms of plastic deformation of ice, J. Phys. C1, Volume 48 (1987), pp. 163-173

[31] F. Louchet Dislocations and plasticity in ice, C. R. Physique, Volume 5 (2004) no. 7

[32] T. Hondoh Nature and behavior of dislocations in ice (F.R.N. Nabarro; T. Hondoh, eds.), Physics of Ice Core Records, Hokkaido University Press, 2000, pp. 3-24

[33] M.F. Ashby; P. Duval The creep of polycrystalline ice, Cold Reg. Sci. Technol, Volume 11 (1985), pp. 285-300

[34] J.W. Hutchinson Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Metall. Mater. Trans. A, Volume 8 (1977), pp. 1465-1469

[35] V.Ya. Lipenkov; A.N. Salamatin; P. Duval Bubbly-ice densification in ice sheets: II. Applications, J. Glaciol, Volume 43 (1997), pp. 397-407

[36] A.J. Gow, T. Williamson, Rheological implications of the internal structure and crystal fabrics on the West Antarctic ice sheet as revealed by deep core drilling at Byrd station, CRREL Rep. 76–35, U.S. Army Cold Reg. Res. Eng. Lab. Hanover, NH, 1976

[37] P. Duval; C. Lorius Crystal size and climatic record down to the last ice age from antarctic ice, Earth Planet. Sci. Lett, Volume 48 (1980), pp. 59-64

[38] T. Thorsteinsson; J. Kipfstuhl; H. Miller Texture and fabrics in the GRIP ice core, J. Geophys. Res, Volume 102 (1997) no. C12, pp. 583-599

[39] A.J. Gow; 7 co-authors Physical and structural properties of the GISP2 ice core: a review, J. Geophys. Res, Volume 102 (1997) no. C12, pp. 26559-26575

[40] S. de La Chapelle; O. Castelnau; V.Ya. Lipenkov; P. Duval Dynamic recrystallisation and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland, J. Geophys. Res, Volume 103 (1998) no. B3, pp. 5091-5105

[41] J. Weiss; J. Vidot; M. Gay; L. Arnaud; P. Duval; J. R Petit Dome Concordia microstructure: impurities effect on grain growth, Ann. Glaciol, Volume 35 (2002), pp. 552-558

[42] D.L. Goldsby; D.L. Kohlstedt Grain boundary sliding in fine-grained ice I, Scripta Mater, Volume 37 (1997) no. 9, pp. 1399-1406

[43] D.L. Goldsby; D.L. Kohlstedt Superplastic deformation of ice: experimental observations, J. Geophys. Res, Volume 106 (2001) no. B6, pp. 11017-11030

[44] T.G. Langdon A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater, Volume 42 (1994), pp. 2437-2443

[45] P. Duval; M. Montagnat Comments on “Superplastic deformation of ice: experimental observations” by D.L. Goldsby and D.L. Kohlstedt, J. Geophys. Res, Volume 107 (2002) no. B5, pp. 1-2 (ECV4)

[46] M.F. Ashby The deformation of plastically non-homogeneous materials, Philos. Mag, Volume 13 (1970), pp. 399-424

[47] M. Montagnat; P. Duval; P. Bastie; B. Hamelin; O. Brissaud; M. de Angelis; J.R. Petit; V.Ya. Lipenkov High crystalline quality of large single crystals of subglacial ice above Lake Vostok (Antarctica) revealed by hard X-ray diffraction, C. R. Acad. Sci. Paris, Ser. IIb, Volume 333 (2001), pp. 419-425

[48] M. Montagnat; P. Duval; P. Bastie; B. Hamelin Strain gradients and geometrically necessary dislocations in deformed ice single crystals, Scripta Mater, Volume 49 (2003), pp. 411-415

[49] S.L. Herron; C.C. Langway A comparison of ice fabrics and textures at Camp Century, Greenland and Byrd Station, Antarctica, Ann. Glaciol, Volume 3 (1982), pp. 118-124

[50] N. Azuma; Y. Wang; K. Mori; H. Narita; T. Hondoh; H. Shoji; O. Watanabe Textures and fabrics in Dome F (Antarctica) ice core, Ann. Glaciol, Volume 29 (1999), pp. 163-168

[51] Y. Wang; T. Thorsteinsson; J. Kipfstuhl; H. Miller; D. Dahl-Jensen; H. Shoji A vertical girdle fabric in the North GRIP deep ice core, North Greenland, Ann. Glaciol, Volume 35 (2002), pp. 515-520

[52] V.Ya Lipenkov; N.I. Barkov; P. Duval; P. Pimienta Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica, J. Glaciol, Volume 35 (1989), pp. 392-398

[53] L. Lliboutry A critical review of analytical approximate solutions for steady state velocities and temperatures in cold ice-sheets, Z. Gletscherkunde Glacialgeologie, Volume 15 (1979), pp. 135-148

[54] R.B. Alley Fabrics in polar ice sheets: development and prediction, Science, Volume 240 (1988), pp. 493-495

[55] K.M. Cuffey; T. Thorsteinsson; E.D. Waddington A renewed argument for crystal size control of ice sheet strain rates, J. Geophys. Res, Volume 105 (2000) no. B12, pp. 27889-27894

[56] K.M. Cuffey; H. Conway; A. Gades; B. Hallet; C.F. Raymond; S. Whitlow Deformation properties of subfreezing glacier ice: role of crystal size, chemical impurities, and rock particles inferred from in-situ measurements, J. Geophys. Res, Volume 105 (2000) no. B12, pp. 27895-27915

[57] T. Thorsteinsson; E.D. Waddington; K.C. Taylor; R.B. Alley; D.D. Blankenship Strain-rate enhancement at Dye 3, Greenland, J. Glaciol, Volume 45 (1999), pp. 338-345

[58] O. Castelnau; H. Shoji; A. Mangeney; H. Milsch; P. Duval; A. Miyamoto; K. Kawada; O. Watanabe Anisotropic behavior of GRIP ices and flow in central Greenland, Earth Planet. Sci. Lett, Volume 154 (1998), pp. 307-322

[59] D. Dahl-Jensen Determination of the flow properties at Dye 3, South Greenland, by bore-hole-tilting measurements and perturbation modelling, J. Glaciol, Volume 31 (1985), pp. 92-98

[60] W.S.B. Paterson Why ice-age ice is sometimes “soft”?, Cold Reg. Sci. Technol, Volume 20 (1991), pp. 75-98

[61] A. Mangeney; F. Califano; O. Castelnau Isothermal flow of an anisotropic ice sheet in the vicinity of an ice divide, J. Geophys. Res, Volume 101 (1996) no. B12, pp. 28189-28204

[62] O. Gagliardini; J. Meyssonnier Simulation of anisotropic ice flow and fabric evolution along the GRIP-GISP2 flow line (Central Greenland), Ann. Glaciol, Volume 30 (2000), pp. 217-223

[63] Th. Thorsteinsson; E.D. Waddington Folding in strongly anisotropic layers near ice-sheet centers, Ann. Glaciol, Volume 35 (2002), pp. 480-485

[64] J. Meyssonnier; A. Philip A model for the tangent viscous behaviour of anisotropic polar ice, Ann. Glaciol, Volume 23 (1996), pp. 253-261

[65] R.A. Lebensohn; C.N. Tomé A self consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloy, Acta Metall, Volume 41 (1993), pp. 2611-2624

[66] C.N. Tomé Self-consistent polycrystal model: a directional compliance criterion to describe grain interactions, Model. Simul. Mater. Sci. Eng, Volume 7 (1999), pp. 723-738

[67] M. Montagnat, Contribution à l'étude du comportement viscoplastique des glaces des calottes polaires : modes de déformation et simulation du développement des textures, Thèse de doctorat de l'Université Joseph Fourier-Grenoble I, 2001

[68] R.A. Lebenshon, Y. Liu, P. Ponte Castañeda, Macroscopic properties and field fluctuations in model power-law polycrystals: full-field solutions versus self-consistent estimates, Proc. R. Soc. London Ser. A, in press

[69] R.A. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform, Acta Mater, Volume 49 (2001), pp. 2723-2737

[70] H. Moulinec; P. Suquet A fast numerical method for computing the linear and nonlinear mechanical properties of composites, C. R. Acad. Sci. Paris, Ser. IIb, Volume 318 (1994), pp. 1417-1423

[71] R.A. Lebensohn, M. Montagnat, P. Duval, Modeling the viscoplastic behavior and calculation of intracrystalline fields in columnar ice polycrystals, J. Geophys. Res., in press

[72] D.R. Homer; J.W. Glen The creep activation energy of ice, J. Glaciol, Volume 21 (1978), pp. 429-444

[73] G. Wakahama On the plastic deformation of single crystal of ice (H. Oura, ed.), Physics of Snow and Ice, Hokkaido University Press, 1967, pp. 291-311

[74] R.O. Ramseier, Growth and mechanical properties of river and lake ice, Ph.D. Thesis, Laval University, Canada, 1972

[75] P. Pimienta, Étude du comportement mécanique des glaces polycristallines aux faibles contraintes Thèse de l'Univesité Joseph Fourier-Grenoble I, 1987

[76] T.H. Jacka The time and strain required for development of minimum strain rates in ice, Cold Reg. Sci. Technol, 8 (1984), pp. 261-268

[77] T.H. Jacka; L. Jun Flow rates and crystal orientation fabrics in compression of polycrystalline ice at low temperatures and stresses (T. Hondoh, ed.), Physics of Ice Core Records, Hokkaido University Press, 2000, pp. 83-102

[78] J. Chévy, personal communication

Cité par Sources :

Commentaires - Politique