Comptes Rendus
Ice streams—fast, and faster?
[Fleuves de glace : toujours plus vite ?]
Comptes Rendus. Physique, Volume 5 (2004) no. 7, pp. 723-734.

L'écoulement rapide des fleuves de glace est causé soit par leur grande épaisseur, soit par une lubrification efficace à la base, en particulier due aux sédiments sous-glaciaires déformés. Les différents processus thermiques en compétition peuvent stabiliser ou déstabiliser ces fleuves de glace lubrifiés, ce qui pourrait contribuer à leur variabilité à court terme comme à leur persistance à long terme. Les évidences s'accumulent en faveur d'une accélération des fleuves de glace en réponse au réchauffement climatique global, par un amincissement ou un retrait des plate-formes glaciaires, et peut-être par la pénétration d'eau de fonte vers le lit glaciaire.

Rapid flow of ice streams is caused either by great thickness, or by effective basal lubrication especially from deforming tills. Competing thermal processes act to stabilize and to destabilize the well-lubricated ice streams, and may contribute to their observed short-term variability yet long-term persistence. Increasing evidence indicates that ice streams are subject to speed-up in response to warming, through thinning or loss of ice shelves, and possibly in response to meltwater penetration to ice-stream beds.

Publié le :
DOI : 10.1016/j.crhy.2004.08.002
Keywords: Ice-stream, Ice-sheet, Antarctica, Greenland, Till, Sea-level, Ice-shelf
Mot clés : Fleuves de glace, Calottes polaires, Antarctique, Groenland, Sédiments sous glaciaires, Niveau des mers, Plate-forme glaciaire
Richard B. Alley 1 ; Sridhar Anandakrishnan 1 ; Todd K. Dupont 1 ; Byron R. Parizek 1

1 Department of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania State University, Deike Building, University Park, PA 16802, USA
@article{CRPHYS_2004__5_7_723_0,
     author = {Richard B. Alley and Sridhar Anandakrishnan and Todd K. Dupont and Byron R. Parizek},
     title = {Ice streams{\textemdash}fast, and faster?},
     journal = {Comptes Rendus. Physique},
     pages = {723--734},
     publisher = {Elsevier},
     volume = {5},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crhy.2004.08.002},
     language = {en},
}
TY  - JOUR
AU  - Richard B. Alley
AU  - Sridhar Anandakrishnan
AU  - Todd K. Dupont
AU  - Byron R. Parizek
TI  - Ice streams—fast, and faster?
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 723
EP  - 734
VL  - 5
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.08.002
LA  - en
ID  - CRPHYS_2004__5_7_723_0
ER  - 
%0 Journal Article
%A Richard B. Alley
%A Sridhar Anandakrishnan
%A Todd K. Dupont
%A Byron R. Parizek
%T Ice streams—fast, and faster?
%J Comptes Rendus. Physique
%D 2004
%P 723-734
%V 5
%N 7
%I Elsevier
%R 10.1016/j.crhy.2004.08.002
%G en
%F CRPHYS_2004__5_7_723_0
Richard B. Alley; Sridhar Anandakrishnan; Todd K. Dupont; Byron R. Parizek. Ice streams—fast, and faster?. Comptes Rendus. Physique, Volume 5 (2004) no. 7, pp. 723-734. doi : 10.1016/j.crhy.2004.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.08.002/

[1] C.R. Bentley Antarctic ice streams—A review, J. Geophys. Res., Volume 92B (1987), pp. 8843-8858

[2] D.R. MacAyeal A low-order model of the Heinrich event cycle, Paleoceanography, Volume 8 (1992), pp. 767-773

[3] D.R. MacAyeal Binge/purge oscillations of the Laurentide ice sheet as a cause of the north Atlantic's Heinrich events, Paleoceanography, Volume 8 (1992), pp. 775-784

[4] R.B. Alley; D.R. MacAyeal Ice-rafted debris associated with binge-purge oscillations of the Laurentide ice sheet, Paleoceanography, Volume 9 (1994), pp. 503-511

[5] W.S.B. Paterson The Physics of Glaciers, Pergamon Press, Oxford, 1994

[6] J. Weertman Glacier sliding, J. Glaciol., Volume 5 (1964), pp. 287-303

[7] T.S. Clarke; K. Echelmeyer Seismic-reflection evidence for a deep subglacial trough beneath Jakobshavns Isbrae, West Greenland, J. Glaciol., Volume 42 (1996), pp. 219-232

[8] M. Truffer; K.A. Echelmeyer Of isbrae and ice streams, Ann. Glaciol., Volume 36 (2003), pp. 66-72

[9] D.E. Sugden; B.S. John Glaciers and Landscape: A Geomorphological Approach, Wiley and Sons, New York, 1976

[10] B. Hallet Glacial abrasion and sliding: their dependence on the debris concentration in basal ice, Ann. Glaciol., Volume 2 (1981), pp. 23-28

[11] B. Hallet Glacial quarrying: a simple theoretical model, Ann. Glaciol., Volume 22 (1996), pp. 1-9

[12] R.B. Alley; D.E. Lawson; G.J. Larson; E.B. Evenson; G.S. Baker Stabilizing feedbacks in glacier-bed erosion, Nature, Volume 424 (2003), pp. 758-760

[13] M.A. Fahnestock; I. Joughin; T.A. Scambos; R. Kwok; W.B. Krabill; S. Gogineni Ice-stream-related patterns of ice flow in the interior of northeast Greenland, J. Geophys. Res., Volume 106D (2001), pp. 34035-34045

[14] I. Joughin; M. Fahnestock; D. MacAyeal; J.L. Bamber; P. Gogineni Observation and analysis of ice flow in the largest Greenland ice stream, J. Geophys. Res., Volume 106D (2001), pp. 34021-34034

[15] B. Kamb The West Antarctic Ice Sheet: Behavior and Environment (R.B. Alley; R.A. Bindschadler, eds.), American Geophysical Union, Washington, 2001, p. 157

[16] K.M. Cuffey; H. Conway; B. Hallet; A.M. Gades; C.F. Raymond Interfacial water in polar glaciers and glacier sliding at −17 °C, Geophys. Res. Lett., Volume 26 (1999), pp. 751-754

[17] R.B. Alley Deforming-bed origin for southern Laurentide till sheets, J. Glaciol., Volume 37 (1991), pp. 67-76

[18] C.D. Clark; C.R. Stokes Extent and basal characteristics of the M'Clintock Channel Ice Stream, Quaternary Int., Volume 86 (2001), pp. 81-101

[19] C.R. Stokes; C.D. Clark The Dubawnt Lake palaeo-ice stream: evidence for dynamic ice sheet behaviour on the Canadian Shield and insights regarding the controls on ice-stream location and vigour, Boreas, Volume 32 (2003), pp. 263-279

[20] D.D. Blankenship; C.R. Bentley; S.T. Rooney; R.B. Alley Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream, Nature, Volume 322 (1986), pp. 54-57

[21] S. Anandakrishnan Dilatant till layer near the onset of streaming flow of Ice Stream C, West Antarctica, determined by AVO (amplitude vs offset) analysis, Ann. Glaciol., Volume 36 (2003), pp. 283-286

[22] N.E. Brown; B. Hallet; D. Booth Rapid soft bed sliding of the Puget glacial lobe, J. Geophys. Res., Volume 92B (1987), pp. 8985-8997

[23] S. Tulaczyk; W.B. Kamb; H.F. Engelhardt Basal mechanics of ice stream B, West Antarctica. 1. Till mechanics, J. Geophys. Res., Volume 105B (2000), pp. 462-481

[24] N.R. Iverson; D. Cohen; T.S. Hooyer; U.H. Fischer; M. Jackson; P.L. Moore; G. Lappegard; J. Kohler Effects of basal debris on glacier flow, Science, Volume 301 (2003), pp. 81-84

[25] S.W. Vogel; S. Tulaczyk; I.R. Joughin Distribution of basal melting and freezing beneath tributaries of ice stream C: Implication for the Holocene decay of the West Antarctic ice sheet, Ann. Glaciol., Volume 36 (2003), pp. 23-282

[26] R.B. Alley Deformation of Glacial Materials (A.J. Maltman; B. Hubbard; M.J. Hambrey, eds.), Special Publications, vol. 176, Geological Society, London, 2000, p. 171

[27] W.B. Kamb; D. Pollard; C.B. Johnson Rock-frictional resistance to glacier sliding, EOS, T. Am. Geophys. Union, Volume 57 (1976), p. 325 (abstract)

[28] R.C. Metcalf Energy dissipation during subglacial abrasion at Nisqually Glacier, Washington, U.S.A., J. Glaciol., Volume 23 (1979), pp. 233-245

[29] K.A. Echelmeyer; W.D. Harrison; C. Larsen; J.E. Mitchell The role of the margins in the dynamics of an active ice stream, J. Glaciol., Volume 40 (1994), pp. 527-538

[30] R. Thomas; D.R. MacAyeal Derived characteristics of the Ross Ice Shelf, J. Glaciol., Volume 28 (1982), pp. 397-412

[31] K.C. Jezek; R.B. Alley; R.H. Thomas Rheology of glacier ice, Science, Volume 227 (1985), pp. 1335-1337

[32] E. Rignot; D.G. Vaughan; M. Schmeltz; T. Dupont; D. MacAyeal Acceleration of Pine Island and Thwaites Glaciers, West Antarctica, Ann. Glaciol., Volume 34 (2002), pp. 189-194

[33] I.M. Whillans; C.R. Bentley; C.J. van der Veen The West Antarctic Ice Sheet: Behavior and Environment (R.B. Alley; R.A. Bindschadler, eds.), American Geophysical Union, Washington, 2001, p. 257

[34] I.R. Joughin; S. Tulaczyk; H.E. Engelhardt Basal melt beneath Whillans ice stream and ice streams A and C, West Antarctica, Ann. Glaciol., Volume 36 (2003), pp. 257-262

[35] C.F. Raymond; K.A. Echelmeyer; I.M. Whillans; C.S.M. Doake The West Antarctic Ice Sheet: Behavior and Environment (R.B. Alley; R.A. Bindschadler, eds.), American Geophysical Union, Washington, 2001, p. 137

[36] R.B. Alley Flow-law hypotheses for ice-sheet modeling, J. Glaciol., Volume 38 (1992), pp. 245-256

[37] M. Jackson; B. Kamb The marginal shear stress of Ice Stream B, West Antarctica, J. Glaciol., Volume 44 (1997), pp. 415-426

[38] I. Joughin, D.R. MacAyeal, S. Tulaczyk, Basal Shear Stress of the Ross Ice Streams from Control Method Inversions, J. Geophysical Res. (in revision)

[39] W.D. Harrison; K.A. Echelmeyer; C.F. Larsen Measurement of temperature in a margin of ice stream B, Antarctica: Implications for margin migration and lateral drag, J. Glaciol., Volume 44 (1998), pp. 615-624

[40] R.B. Alley In search of ice-stream sticky spots, J. Glaciol., Volume 39 (1993), pp. 447-454

[41] D.R. MacAyeal; R.A. Bindschadler; T.A. Scambos Basal friction of ice-stream E, West Antarctica, J. Glaciol., Volume 41 (1995), pp. 247-262

[42] S. Anandakrishnan; R.B. Alley Ice stream C, Antarctica, sticky spots detected by microearthquake monitoring, Ann. Glaciol., Volume 20 (1994), pp. 183-186

[43] S. Anandakrishnan; R.B. Alley Tidal forcing of basal seismicity of ice stream C, West Antarctica, observed far inland, J. Geophys. Res., Volume 102B (1997), pp. 15183-15196

[44] S. Anandakrishnan; C.R. Bentley Micro-earthquakes beneath ice stream-B and ice stream-C, West Antarctica—Observations and implications, J. Glaciol., Volume 39 (1993), pp. 455-462

[45] N.R. Iverson; T.S. Hooyer; R.W. Baker Ring-shear studies of till deformation: Coulomb-plastic behavior and distributed strain in glacier beds, J. Glaciol., Volume 44 (1998), pp. 634-642

[46] P.L. Moore; N.R. Iverson Slow episodic shear of granular materials regulated by dilatant strengthening, Geology, Volume 30 (2002), pp. 843-846

[47] R.A. Bindschadler; M.A. King; R.B. Alley; S. Anandakrishnan; L. Padman Tidally controlled stick-slip discharge of a West Antarctic ice stream, Science, Volume 301 (2003), pp. 1087-1089

[48] S. Anandakrishnan; D.E. Voigt; R.B. Alley; M.A. King Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf, Geophys. Res. Lett., Volume 30 (2003), p. 1361

[49] S. Anandakrishnan; R.B. Alley; R.W. Jacobel; H. Conway The West Antarctic Ice Sheet: Behavior and Environment (R.B. Alley; R.A. Bindschadler, eds.), American Geophysical Union, Washington, 2001, p. 283

[50] R.B. Alley; D.D. Blankenship; S.T. Rooney; C.R. Bentley Sedimentation beneath ice shelves—the view from ice stream B, Mar. Geol., Volume 85 (1989) no. 2–4, pp. 101-120

[51] J.H. Mercer Antarctic ice and Sangamon Sea Level, Int. Assoc. Sci. Hydrol. Symp., Volume 79 (1968), pp. 217-225

[52] J. Weertman Stability of the junction of an ice sheet and an ice shelf, J. Glaciol., Volume 13 (1974), pp. 3-11

[53] R.H. Thomas; C.R. Bentley A model for Holocene retreat of the West Antarctic ice sheet, Quaternary Res., Volume 10 (1978), pp. 150-170

[54] R.H. Thomas; W. Abdalati; E. Frederick; W.B. Krabill; S. Manizade; K. Steffen Investigation of surface melting and dynamic thinning on Jakobshavn Isbrae, Greenland, J. Glaciol., Volume 49 (2003), pp. 231-239

[55] C.S.M. Doake; H.F.J. Corr; A. Jenkins; K. Makinsson; K.W. Nicholls; C. Nath; A.M. Smith; D.G. Vaughan The West Antarctic Ice Sheet: Behavior and Environment (R.B. Alley; R.A. Bindschadler, eds.), American Geophysical Union, Washington, 2001, p. 1221

[56] D.G. Vaughan; A.M. Smith; H.F.J. Corr; A. Jenkins; C.R. Bentley; M.D. Stenoien; S.S. Jacobs; T.B. Kellogg; E. Rignot; B.K. Lucchita The West Antarctic Ice Sheet: Behavior and Environment (R.B. Alley; R.A. Bindschadler, eds.), American Geophysical Union, Washington, 2001, p. 237

[57] A. Vieli; A.J. Payne Application of control methods for modelling the flow of Pine Island Glacier, West Antarctica, Ann. Glaciol., Volume 36 (2003), pp. 197-204

[58] D.M. Mickelson; L. Clayton; D.D. Fullerton; H.W. Borns The Late Pleistocene, Late Quaternary Environments of the United States, vol. 1, University of Minnesota Press, Minneapolis, 1982, p. 3

[59] J.A. Dowdeswell; A. Elverhoi The timing of fast-flowing ice streams during a glacial cycle inferred from glacimarine sedimentation, Mar. Geol., Volume 188 (2002), pp. 3-14

[60] C.D. Clark; D.J.A. Evans; J.A. Piotrowski Palaeo-ice streams: An introduction, Boreas, Volume 32 (2003), pp. 1-3

[61] W.S. Broecker Massive iceberg discharges as triggers for global climate change, Nature, Volume 372 (1994), pp. 421-424

[62] S.R. Hemming Heinrich events: Massive late pleistocene detritus layers of the North Atlantic and their global climate imprint, Rev. Geophys., Volume 42 (2004), p. RG1005

[63] T.K. Dupont; R.B. Alley Do ice shelves matter (abstract), West Antarctic ice sheet meeting, Sterling, VA, 1999 http://igloo.gsfc.nasa.gov/wais/abstracts99/dupont.html

[64] R.B. Alley, T.K. Dupont, B.R. Parizek, S. Anandakrishnan, D.E. Lawson, G.J. Larson, E.B. Evenson, Outburst flooding and surge initiation in response to climatic cooling: an hypothesis, Geomorphology (in press)

[65] R.B. Alley; I.M. Whillans Changes in the West Antarctic ice sheet, Science, Volume 254 (1991), pp. 959-963

[66] R.W. Jacobel; T.A. Scambos; N.A. Nereson; C.F. Raymond Changes in the margin of ice stream C, Antarctica, J. Glaciol., Volume 46 (2000), pp. 102-110

[67] R.W. Jacobel; T.A. Scambos; C.F. Raymone; A.M. Gades Changes in the configuration of ice stream flow from the West Antarctic ice sheet, J. Geophys. Res., Volume 101B (1996), pp. 5499-5504

[68] I. Joughin; S. Tulaczyk; S. Bindschadler; S.F. Price Changes in West Antarctic ice stream velocities: Observation and analysis, J. Geophys. Res., Volume 107B (2002) no. 2289

[69] M.A. Fahnestock; T.A. Scambos; R.A. Bindschadler; G. Kvaran A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica, J. Glaciol., Volume 46 (2000), pp. 652-664

[70] R.A. Bindschadler History of lower Pine Island Glacier, West Antarctica, from Landsat Imagery, J. Glaciol., Volume 48 (2002), pp. 536-544

[71] A. Shepherd; D.J. Wingham; J.A.D. Mansley; H.F.J. Corr Inland thinning of Pine Island Glacier, West Antarctica, Science, Volume 291 (2001), pp. 862-864

[72] A. Shepherd; D.J. Wingham; J.A.D. Mansley Inland thinning of the Amundsen Sea sector, West Antarctica, Geophys. Res. Lett., Volume 29 (2002), p. 1364

[73] E.J. Rignot Fast recession of a West Antarctic glacier, Science, Volume 281 (1998), pp. 549-551

[74] E. Rignot Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica, J. Glaciol., Volume 47 (2001), pp. 213-222

[75] E. Rignot Ice-shelf changes in Pine Island Bay, J. Glaciol., Volume 48 ( 1947–2000 ), pp. 247-256

[76] E. Rignot; S.S. Jacobs Rapid bottom melting widespread near Antarctic ice sheet grounding lines, Science, Volume 296 (2002), pp. 2020-2023

[77] M. Oppenheimer; R.B. Alley The West Antarctic ice sheet and long term climate policy: An Editorial Comment, Climatic Change, Volume 64 (2004), pp. 1-10

[78] M. Schmeltz; E. Rignot; T.K. Dupont; D.R. MacAyeal Sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions: a model study, J. Glaciol., Volume 48 (2003), pp. 552-558

[79] A.J. Payne; A. Vieli Can the recent thinning and acceleration of Pine Island Glacier, West Antarctica be explained by changes in its ice shelf?, EOS Trans. AGU, Volume 84 (2003) no. 46 (Fall Meet. Suppl., Abstract C31C–0411)

[80] S.S. Jacobs; C.F. Giulivi; P.A. Mele Freshening of the Ross Sea during the late 20th century, Science, Volume 297 (2002), pp. 386-389

[81] S.S. Jacobs; H.H. Hellmer; A. Jenkins Antarctic ice sheet melting in the southeast Pacific, Geophys. Res. Lett., Volume 23 (1996), pp. 957-960

[82] D.G. Vaughan Implications of the breakup of Wordie Ice Shelf, Antarctica, for sea level, Antarctic Sci., Volume 5 (1993), pp. 403-408

[83] T. Scambos; C. Hulbe; M. Fahnestock Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives (E. Domack; A. Leventer; A. Burnett; R. Bindschadler; P. Convey; M. Kirby, eds.), American Geophysical Union, Washington, 2004, p. 79

[84] H. De Angelis; P. Skvarca Glacier surge after ice shelf collapse, Science, Volume 299 (2003), pp. 1560-1562

[85] H.J. Zwally; W. Abdalati; T. Herring; K. Larson; J. Saba; K. Steffen Surface melt-induced acceleration of Greenland ice-sheet flow, Science, Volume 297 (2002), pp. 218-222

[86] T.A. Scambos; J.A. Bohlander Glaciers of Larsen B embayment area show marked speed-up since shelf collapse, EOS Trans. AGU, Volume 84 (2003) no. 46 (Fall Meet. Suppl., Abstract C11C–0829)

[87] D.R. Reusch; R.B. Alley A 15-year West Antarctic climatology from six automatic-weather-station temperature and pressure records, J. Geophys. Res., Volume 109D (2004), p. D04103

[88] R.B. Alley Towards a hydrological model for computerized ice-sheet simulations, Hydrol. Process., Volume 10 (1996), pp. 649-660

[89] H.P. Jacobson; C.F. Raymond Thermal effects on the location of ice stream margins, J. Geophys. Res., Volume 103B (1998), pp. 12111-12122

[90] B.R. Parizek; R.B. Alley; S. Anandakrishnan; H. Conway Sub-catchment melt and long-term stability of ice stream D, West Antarctica, Geophys. Res. Lett., Volume 29 (2002), p. 1214

[91] B.R. Parizek; R.B. Alley; C.L. Hulbe Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica, Ann. Glaciol., Volume 36 (2003), pp. 251-256

[92] Presentation by H.F. Engelhardt at 2002 Annual West Antarctic Ice Sheet meeting, Sterling, Virginia, USA

[93] F. Carsey; A. Behar; A.L. Lane; V. Realmuto; H. Engelhardt A borehole camera system for imaging the deep interior of ice sheets, J. Glaciol., Volume 48 (2002), pp. 622-628

[94] P. Christoffersen; S. Tulaczyk Thermodynamics of basal freeze-on: predicting basal and subglacial signatures of stopped ice streams and interstream ridges, Ann. Glaciol., Volume 36 (2003), pp. 233-243

[95] G. de Q. Robin; J. Weertman Cyclic surging of glaciers, J. Glaciol., Volume 12 (1973), pp. 3-18

[96] S. Tulaczyk; B. Kamb; H.F. Engelhardt Estimates of effective stress beneath a modern West Antarctic ice stream from till preconsolidation and void ratio, Boreas, Volume 30 (2001), pp. 101-114

[97] H. Conway; B.L. Hall; G.H. Denton; A.M. Gades; E.D. Waddington Past and future grounding-line retreat of the West Antarctic ice sheet, Science, Volume 286 (1999), pp. 280-283

[98] IPCC (Intergovernmental Panel on Climate Change) The Science of Climate Change, Cambridge University Press, 2001

[99] B.R. Parizek; R.B. Alley Implications of increased Greenland surface melt under global-warming scenarios: Ice-sheet simulations, Quaternary Sci. Rev., Volume 23 (2004), pp. 1013-1027

[100] K. Jezek and RAMP Product Team, RAMP AMM-1 SAR Image Mosaic of Antarctica. Fairbanks, AK: Alaska Satellite Facility, in association with the National Snow and Ice Data Center, Boulder, CO, Digital Media, 2002

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Antarctica ice sheet mass balance

Frédérique Rémy; Massimo Frezzotti

C. R. Géos (2006)


The Southern Ocean silica cycle

Paul J. Tréguer

C. R. Géos (2014)