The sea ice cover, which insulates the ocean from the atmosphere, plays a fundamental role in the Earth's climate system. This cover deforms and fractures under the action of winds, ocean currents and thermal stresses. Along with thermodynamics, this deformation and fracturing largely controls the amount of open water within the ice cover and the distribution of ice thickness, two parameters of high climatic importance, especially during fall and winter (no melting). Here we present a scaling analysis of sea ice deformation and fracturing that allows us to characterize the heterogeneity of fracture patterns and of deformation fields, as well as the intermittency of stress records. We discuss the consequences of these scaling properties, particularly for sea ice modelling in global climate models. We show how multifractal scaling laws can be extrapolated to small scales to learn about the nature of the mechanisms that accommodate the deformation. We stress that these scaling properties preclude the use of homogenisation techniques (i.e. the use of mean values) to link different scales, and we discuss how these detailed observations should be used to constrain sea ice dynamics modelling.
La banquise, en isolant l'océan de l'atmosphère, joue un rôle fondamental dans le climat terrestre. Elle se déforme et se fracture sous l'action des vents, des courants océaniques et des contraintes thermiques. En sus des processus thermodynamiques, cette fracturation contrôle en grande partie la proportion d'eau libre et la distribution des épaisseurs de glace, deux paramètres très importants du point de vue climatique, particulièrement pendant l'automne et l'hiver en l'absence de fonte. Nous présentons ici une analyse des propriétés d'échelle de la banquise qui permet de caractériser l'hétérogénéité des réseaux de fracture et des champs de déformation, ainsi que l'intermittence des fluctuations de contrainte. Nous discutons les conséquences de ces propriétés d'échelle, en particulier pour la modélisation de la banquise dans les modèles climatiques. Nous montrons comment les lois d'échelle multifractales peuvent être extrapolées vers les petites échelles pour déterminer la nature des mécanismes physiques accommodant la déformation de la banquise. Nous soulignons le fait que ces lois d'échelle invalident l'utilisation de techniques d'homogénéisation pour modéliser les changements d'échelle, et nous discutons comment ces observations peuvent être utilisées pour contraindre des modèles de dynamique de la banquise.
Mots-clés : Banquise, Déformation, Fracture, Intermittence, Multifractal, Climat
Jérôme Weiss 1; David Marsan 2
@article{CRPHYS_2004__5_7_735_0, author = {J\'er\^ome Weiss and David Marsan}, title = {Scale properties of sea ice deformation and fracturing}, journal = {Comptes Rendus. Physique}, pages = {735--751}, publisher = {Elsevier}, volume = {5}, number = {7}, year = {2004}, doi = {10.1016/j.crhy.2004.09.005}, language = {en}, }
Jérôme Weiss; David Marsan. Scale properties of sea ice deformation and fracturing. Comptes Rendus. Physique, Ice: from dislocations to icy satellites, Volume 5 (2004) no. 7, pp. 735-751. doi : 10.1016/j.crhy.2004.09.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.09.005/
[1] Dynamics of recent climate change in the Arctic, Science, Volume 297 (2002), pp. 1497-1502
[2] Recent changes in arctic sea ice: the interplay between ice dynamics and thermodynamics, J. Climate, Volume 13 (2000) no. 17, pp. 3099-3114
[3] Large scale heat exchange and ice production in the central Arctic, J. Geophys. Res., Volume 87 (1982) no. C10, pp. 7971-7984
[4] Recent environmental changes in the Arctic: a review, Arctic, Volume 53 (2000) no. 4, pp. 359-371
[5] Will the Arctic Ocean lose all its ice?, Science, Volume 286 (1999), p. 1828
[6] Thinning of the Arctic Sea Ice cover, Geophys. Res. Lett., Volume 26 (1999) no. 23, pp. 3469-3472
[7] A rapidly declining perennial sea ice cover in the Arctic, Geophys. Res. Lett., Volume 29 (2002) | DOI
[8] A warmer Arctic means change for all, Science, Volume 297 (2002), pp. 1490-1492
[9] Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., Volume 102 (1997) no. C6, pp. 12609-12646
[10] A dynamic thermodynamics sea ice model, J. Phys. Oceanography, Volume 9 (1979), pp. 815-846
[11] The microstructure of ice and its influence on mechanical properties, Engrg. Fracture Mech., Volume 68 (2001), pp. 1797-1822
[12] Brittle failure of ice, Engrg. Fracture Mech., Volume 68 (2001) no. 17/18, pp. 1839-1887
[13] Large-scale sea ice drift and deformation: comparison between models and observations in the western Weddell Sea during 1992, J. Geophys. Res., Volume 103 (1998) no. C10, pp. 21893-21913
[14] Motion-induced stresses in pack ice, J. Geophys. Res., Volume 103 (1998) no. C10, pp. 21831-21843
[15] Spatial hierarchy in Arctic sea ice dynamics, Tellus, Volume 554 (2003), pp. 181-191
[16] Hierarchy and Sea ice mechanics: a case study from the Beaufort Sea, J. Geophys. Res., Volume 100 (1995) no. C3, pp. 4559-4571
[17] The fracture of ice on scales large and small: Arctic leads and wing cracks, J. Glaciology, Volume 37 (1991), pp. 319-322
[18] The force balance of sea ice in a numerical model of the Arctic Ocean, J. Geophys. Res., Volume 102 (1997) no. C9, pp. 21061-21079
[19] Thermomechanics of pack ice, J. Geophys. Res., Volume 103 (1998) no. C10, pp. 21869-21882
[20] Sea ice fracturing on the large scale, Engrg. Fracture Mech., Volume 68 (2001), pp. 2013-2043
[21] A new Lagrangian model of arctic sea ice, J. Phys. Oceanography, Volume 34 (2004), pp. 272-283
[22] The tensile strength of first-year sea ice, J. Glaciology, Volume 39 (1993) no. 133, pp. 609-618
[23] Scaling, universality, and renormalization: the three pillars of modern critical phenomena, Rev. Modern Phys., Volume 71 (1999) no. 2, p. S358-S366
[24] Generalized scale invariance and fractal models of rain, Water Resources Res., Volume 33 (1985), pp. 2483-2488
[25] Scaling rules in rock fracture and possible implications for earthquake prediction, Nature, Volume 297 (1982), pp. 47-49
[26] Fractal geometry of 2-dimensional fracture networks at Yucca Mountain, southwestern Nevada, International Symposium on Fundamentals of Rock Joints, Bjorkliden (O. Stephanson, ed.) (1985), pp. 77-84
[27] Roughness of natural fault surfaces, Geophys. Res. Lett., Volume 14 (1987) no. 1, pp. 29-32
[28] Statistical physics, seismogenesis, ans seismic hazard, Rev. Geophys., Volume 34 (1996) no. 4, pp. 433-462
[29] Scaling of fracture systems in geological media, Rev. Geophys., Volume 39 (2001) no. 3, pp. 347-383
[30] Seismicity of the Earth and Associated Phenomenon, Princeton University Press, Princeton, 1954
[31] Long-term earthquake clustering, Geophys. J. Int., Volume 104 (1991), pp. 117-133
[32] Analyse morphométrique de la zone marginale de la banquise polaire au nord-ouest du spitsberg à partir de l'imagerie SPOT panchromatique, Bull. SFPT, Volume 115 (1989), pp. 17-20
[33] Scaling in fracture and refreezing of sea ice, Physica A, Volume 331 (2003), pp. 291-296
[34] The fractality of sea ice cover, IAHR Ice Symposium, Espoo, Finland (1990), pp. 300-313
[35] Fractal viewpoint of fracture and accretion, J. Phys. Soc. Japan, Volume 54 (1985) no. 3, pp. 857-860
[36] Measuring the Sea Ice Floe Size Distribution, J. Geophys. Res., Volume 89 (1984) no. C4, pp. 6477-6486
[37] Open water production in Arctic sea ice: satellite measurements and model parametrizations, J. Geophys. Res., Volume 100 (1995) no. C10, pp. 20601-20612
[38] Scaling of fracture and faulting in ice on Earth, Surveys Geophys., Volume 24 (2003), pp. 185-227
[39] Hierarchical geometry of faulting, J. Geophys. Res., Volume 101 (1996) no. B3, pp. 5477-5487
[40] Fracturing of ice under compression creep as revealed by a multifractal analysis, J. Geophys. Res., Volume 103 (1998) no. B10, pp. 24005-24016
[41] Multifractal modeling and analyses of crustal heterogeneity (J.A. Goff; K. Holliger, eds.), Heterogeneity in the Crust and Upper Mantle, Kluwer Academic/Plenum Publishers, 2003, pp. 207-236
[42] Turbulence, The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995
[43] Multifractal cascade dynamics and turbulent intermittency, Fractals, Volume 5 (1997), pp. 427-471
[44] Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes, J. Geophys. Res., Volume 92 (1987) no. D8, pp. 9693-9714
[45] Empirical determination of universal multifractal exponents in turbulent velocity fields, Phys. Rev. Lett., Volume 68 (1992), pp. 305-308
[46] Multifractal analysis of the Greenland ice-core project climate data, Geophys. Res. Lett., Volume 22 (1995) no. 13, pp. 1689-1692
[47] Universal multifractal scaling of synthetic aperture radar images of sea-ice, IEEE Trans. Geosci. Remote Sensing, Volume 34 (1996) no. 4, pp. 906-914
[48] Dispersion of sea ice in the Bering Sea, J. Geophys. Res., Volume 90 (1985) no. C4, pp. 7223-7226
[49] Diffusion by continuous movements, Proc. London Math. Soc., Volume 20 (1920), pp. 196-212
[50] Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. London A, Volume 110 (1926), pp. 709-737
[51] Opening and closing of sea ice leads: digital measurements from synthetic aperture radar, J. Geophys. Res., Volume 95 (1990) no. C1, pp. 789-796
[52] The RADARSAT geophysical processor system (C. Tsatsoulis; R. Kwok, eds.), Analysis of SAR Data of the Polar Oceans, Springer-Verlag, 1998, pp. 235-257
[53] An ice motion tracking system at the Alaska SAR facility, IEEE J. Oceanic Engrg., Volume 15 (1990) no. 1
[54] Scale dependence and localization of the deformation of arctic sea ice, Phys. Rev. Lett. (2004) (in press)
[55] Edge wave observation using remote seismoacoustic sensing of ice events in the Arctic, J. Geophys. Res., Volume 103 (1998) no. C10, pp. 21775-21781
[56] Characteristics of pack ice stress in the Alaskan Beaufort Sea, J. Geophys. Res., Volume 103 (1998) no. C10, pp. 21817-21829
[57] Fractional Brownian motions, fractional noises and applications, SIAM Rev., Volume 10 (1968) no. 4, pp. 422-437
[58] Multifractal scaling properties of a growing fault population, Geophys. J. Int., Volume 122 (1995), pp. 457-469
[59] Air-sea interactions over Terra Nova Bay during winter: simulation with a coupled atmosphere-polynya model, J. Geophys. Res., Volume 102 (1997) no. D12, pp. 13835-13849
[60] Modelling sea ice deformation with a viscous-plastic isotropic rheology, 16th IAHR International Symposium on Ice, Dunedin, New Zeland (2002), pp. 59-67
[61] From diffuse to localized damage through elastic interaction, Geophys. Res. Lett., Volume 26 (1999) no. 14, pp. 2109-2112
Cited by Sources:
Comments - Policy