[Dynamique holographique de branes instables dans AdS.]
La théorie de jauge duale à la désintégration de D-particules instables dans AdS est analysée en termes d'état cohérents. Nous discutons en détails le comptage du nombre de particule dans le produit de désintégration. Nous trouvons, en accord avec l'analyse en espace plat, que le taux d'émission est supprimé quand la masse de la particule augmente.
The gauge theory dual to the decay of an unstable D-particle in AdS is analysed in terms of coherent states. We discuss in detail how to count the number of particles in the decay product. We find, in agreement with the analysis in flat space, that the emission amplitude is suppressed as the mass of the radiated particles increases.
Mot clés : Théorie de jauge, Branes unstables
Marija Zamaklar 1 ; Kasper Peeters 1
@article{CRPHYS_2004__5_9-10_1071_0, author = {Marija Zamaklar and Kasper Peeters}, title = {Holographic dynamics of unstable branes in {AdS}}, journal = {Comptes Rendus. Physique}, pages = {1071--1080}, publisher = {Elsevier}, volume = {5}, number = {9-10}, year = {2004}, doi = {10.1016/j.crhy.2004.09.015}, language = {en}, }
Marija Zamaklar; Kasper Peeters. Holographic dynamics of unstable branes in AdS. Comptes Rendus. Physique, Volume 5 (2004) no. 9-10, pp. 1071-1080. doi : 10.1016/j.crhy.2004.09.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.09.015/
[1] Rolling tachyon, JHEP, Volume 0204 (2002), p. 048 | arXiv
[2] Strings from tachyons: the matrix reloaded, 2003 | arXiv
[3] D-sphalerons and the topology of string configuration space, JHEP, Volume 0003 (2000), p. 021 | arXiv
[4] Topology in the Weinberg–Salam theory, Phys. Rev. D, Volume 28 (1983), p. 2019
[5] Sphalerons, merons and unstable branes in AdS, Phys. Rev. D, Volume 62 (2000), p. 086007 | arXiv
[6] Closed strings from decaying D-branes, 2003 | arXiv
[7] AdS/CFT description of D-particle decay, 2004 | arXiv
[8] A saddle point solution in the Weinberg–Salam theory, Phys. Rev. D, Volume 30 (1984), p. 2212
[9] Yang–Mills cosmologies and collapsing gravitational sphalerons, Phys. Lett. B, Volume 320 (1994), pp. 245-252 | arXiv
[10] New approach to field theory, Phys. Rev. D, Volume 7 (1973), pp. 1732-1760
[11] Number operators for composite particles in nonrelativistic many body theory, J. Math. Phys., Volume 21 (1980), pp. 2164-2169
[12] A new double-scaling limit of super Yang–Mills theory and pp-wave strings, Nuclear Phys. B, Volume 643 (2002), pp. 3-30 | arXiv
[13] Operator mixing and the BMN correspondence, JHEP, Volume 0210 (2002), p. 068 | arXiv
[14] BMN correlators and operator mixing in super Yang–Mills theory, Nuclear Phys. B, Volume 650 (2003), pp. 125-161 | arXiv
Cité par Sources :
Commentaires - Politique