[D-branes à partir de factorisations matricielles.]
Les D-branes de type B peuvent être décrites à partir de factorisations matricielles du super-potentiel de Landau–Ginzburg. On revoit ici cette approche prometteuse pour étudier le super-potentiel en espace-temps de compactifications de Calabi–Yau. On discute la graduation des D-branes, et présente deux exemples : le tore en deux dimensions, ainsi que la quintique.
B-type D-branes can be obtained from matrix factorizations of the Landau–Ginzburg superpotential. We here review this promising approach to learning about the spacetime superpotential of Calabi–Yau compactifications. We discuss the grading of the D-branes, and present applications in two examples: the two-dimensional torus, and the quintic.
Mot clés : D-branes, Factorisations matricielles, Superpotentiel
Kentaro Hori 1 ; Johannes Walcher 2
@article{CRPHYS_2004__5_9-10_1061_0, author = {Kentaro Hori and Johannes Walcher}, title = {D-branes from matrix factorizations}, journal = {Comptes Rendus. Physique}, pages = {1061--1070}, publisher = {Elsevier}, volume = {5}, number = {9-10}, year = {2004}, doi = {10.1016/j.crhy.2004.09.016}, language = {en}, }
Kentaro Hori; Johannes Walcher. D-branes from matrix factorizations. Comptes Rendus. Physique, Volume 5 (2004) no. 9-10, pp. 1061-1070. doi : 10.1016/j.crhy.2004.09.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.09.016/
[1] Algebraic geometry and effective lagrangians, Phys. Lett. B, Volume 217 (1989), p. 431
[2] Catastrophes and the classification of conformal theories, Phys. Lett. B, Volume 218 (1989), p. 51
[3] String vacua and orbifoldized L–G models, Modern Phys. Lett. A, Volume 4 (1989), p. 1169
[4] Topological Landau–Ginzburg models, Modern Phys. Lett. A, Volume 6 (1991), p. 337
[5] D-branes in Landau–Ginzburg models and algebraic geometry, JHEP, Volume 0312 (2003), p. 005 | arXiv
[6] Landau–Ginzburg realization of open string TFT | arXiv
[7] Topological correlators in Landau–Ginzburg models with boundaries, Adv. Theoret. Math. Phys., Volume 7 (2004), p. 727 | arXiv
[8] Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc., Volume 260 (1980)
[9] F-term equations near Gepner points | arXiv
[10] D-branes in topological minimal models: the Landau–Ginzburg approach, JHEP, Volume 0407 (2004), p. 045 | arXiv
[11] On the boundary coupling of topological Landau–Ginzburg models | arXiv
[12] Fractional branes in Landau–Ginzburg orbifolds | arXiv
[13] Boundary RG flows of minimal models | arXiv
[14] Obstructed D-branes in Landau–Ginzburg orbifolds | arXiv
[15] Localization and traces in open-closed topological Landau–Ginzburg models | arXiv
[16] D-brane effective action and tachyon condensation in topological minimal models | arXiv
[17] Supersymmetry in boundary integrable models, Nuclear Phys. B, Volume 450 (1995), p. 663 | arXiv
[18] Worldsheet approaches to D-branes on supersymmetric cycles, Nuclear Phys. B, Volume 580 (2000), p. 519 | arXiv
[19] D-branes and mirror symmetry | arXiv
[20] Linear models of supersymmetric D-branes | arXiv
[21] Linear sigma models for open strings, JHEP, Volume 0207 (2002), p. 002 | arXiv
[22] D-branes, categories and supersymmetry, J. Math. Phys., Volume 42 (2001), p. 2818 | arXiv
[23] D-branes on the quintic, JHEP, Volume 0008 (2000), p. 015 | arXiv
[24] String field theory and brane superpotentials, JHEP, Volume 0110 (2001), p. 018 | arXiv
[25] A-infinity structure and superpotentials, JHEP, Volume 0109 (2001), p. 030 | arXiv
[26] D-branes on Calabi–Yau manifolds and superpotentials | arXiv
[27] Open string instantons and superpotentials, Phys. Rev. D, Volume 62 (2000), p. 026001 | arXiv
[28] On superpotentials for D-branes in Gepner models, JHEP, Volume 0010 (2000), p. 016 | arXiv
[29] Orientifolds of Gepner models | arXiv
[30] Matrix factorizations and mirror symmetry: the cubic curve | arXiv
Cité par Sources :
Commentaires - Politique