Comptes Rendus
String theory and fundamental forces/Théorie des cordes et forces fondamentales
D-branes from matrix factorizations
[D-branes à partir de factorisations matricielles.]
Comptes Rendus. Physique, Volume 5 (2004) no. 9-10, pp. 1061-1070.

Les D-branes de type B peuvent être décrites à partir de factorisations matricielles du super-potentiel de Landau–Ginzburg. On revoit ici cette approche prometteuse pour étudier le super-potentiel en espace-temps de compactifications de Calabi–Yau. On discute la graduation des D-branes, et présente deux exemples : le tore en deux dimensions, ainsi que la quintique.

B-type D-branes can be obtained from matrix factorizations of the Landau–Ginzburg superpotential. We here review this promising approach to learning about the spacetime superpotential of Calabi–Yau compactifications. We discuss the grading of the D-branes, and present applications in two examples: the two-dimensional torus, and the quintic.

Publié le :
DOI : 10.1016/j.crhy.2004.09.016
Keywords: D-branes, Matrix factorizations, Superpotential
Mot clés : D-branes, Factorisations matricielles, Superpotentiel

Kentaro Hori 1 ; Johannes Walcher 2

1 University of Toronto, Toronto, Ontario, Canada
2 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, USA
@article{CRPHYS_2004__5_9-10_1061_0,
     author = {Kentaro Hori and Johannes Walcher},
     title = {D-branes from matrix factorizations},
     journal = {Comptes Rendus. Physique},
     pages = {1061--1070},
     publisher = {Elsevier},
     volume = {5},
     number = {9-10},
     year = {2004},
     doi = {10.1016/j.crhy.2004.09.016},
     language = {en},
}
TY  - JOUR
AU  - Kentaro Hori
AU  - Johannes Walcher
TI  - D-branes from matrix factorizations
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 1061
EP  - 1070
VL  - 5
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.09.016
LA  - en
ID  - CRPHYS_2004__5_9-10_1061_0
ER  - 
%0 Journal Article
%A Kentaro Hori
%A Johannes Walcher
%T D-branes from matrix factorizations
%J Comptes Rendus. Physique
%D 2004
%P 1061-1070
%V 5
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2004.09.016
%G en
%F CRPHYS_2004__5_9-10_1061_0
Kentaro Hori; Johannes Walcher. D-branes from matrix factorizations. Comptes Rendus. Physique, Volume 5 (2004) no. 9-10, pp. 1061-1070. doi : 10.1016/j.crhy.2004.09.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.09.016/

[1] E.J. Martinec Algebraic geometry and effective lagrangians, Phys. Lett. B, Volume 217 (1989), p. 431

[2] C. Vafa; N.P. Warner Catastrophes and the classification of conformal theories, Phys. Lett. B, Volume 218 (1989), p. 51

[3] C. Vafa String vacua and orbifoldized L–G models, Modern Phys. Lett. A, Volume 4 (1989), p. 1169

[4] C. Vafa Topological Landau–Ginzburg models, Modern Phys. Lett. A, Volume 6 (1991), p. 337

[5] A. Kapustin; Y. Li D-branes in Landau–Ginzburg models and algebraic geometry, JHEP, Volume 0312 (2003), p. 005 | arXiv

[6] I. Brunner; M. Herbst; W. Lerche; B. Scheuner Landau–Ginzburg realization of open string TFT | arXiv

[7] A. Kapustin; Y. Li Topological correlators in Landau–Ginzburg models with boundaries, Adv. Theoret. Math. Phys., Volume 7 (2004), p. 727 | arXiv

[8] D. Eisenbud Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc., Volume 260 (1980)

[9] K. Hori; J. Walcher F-term equations near Gepner points | arXiv

[10] A. Kapustin; Y. Li D-branes in topological minimal models: the Landau–Ginzburg approach, JHEP, Volume 0407 (2004), p. 045 | arXiv

[11] C.I. Lazaroiu On the boundary coupling of topological Landau–Ginzburg models | arXiv

[12] S.K. Ashok; E. Dell'Aquila; D.E. Diaconescu Fractional branes in Landau–Ginzburg orbifolds | arXiv

[13] K. Hori Boundary RG flows of N=2 minimal models | arXiv

[14] S.K. Ashok; E. Dell'Aquila; D.E. Diaconescu; B. Florea Obstructed D-branes in Landau–Ginzburg orbifolds | arXiv

[15] M. Herbst; C.I. Lazaroiu Localization and traces in open-closed topological Landau–Ginzburg models | arXiv

[16] M. Herbst; C.I. Lazaroiu; W. Lerche D-brane effective action and tachyon condensation in topological minimal models | arXiv

[17] N.P. Warner Supersymmetry in boundary integrable models, Nuclear Phys. B, Volume 450 (1995), p. 663 | arXiv

[18] S. Govindarajan; T. Jayaraman; T. Sarkar Worldsheet approaches to D-branes on supersymmetric cycles, Nuclear Phys. B, Volume 580 (2000), p. 519 | arXiv

[19] K. Hori; A. Iqbal; C. Vafa D-branes and mirror symmetry | arXiv

[20] K. Hori Linear models of supersymmetric D-branes | arXiv

[21] S. Hellerman; S. Kachru; A.E. Lawrence; J. McGreevy Linear sigma models for open strings, JHEP, Volume 0207 (2002), p. 002 | arXiv

[22] M.R. Douglas D-branes, categories and N=1 supersymmetry, J. Math. Phys., Volume 42 (2001), p. 2818 | arXiv

[23] I. Brunner; M.R. Douglas; A.E. Lawrence; C. Romelsberger D-branes on the quintic, JHEP, Volume 0008 (2000), p. 015 | arXiv

[24] C.I. Lazaroiu String field theory and brane superpotentials, JHEP, Volume 0110 (2001), p. 018 | arXiv

[25] A. Tomasiello A-infinity structure and superpotentials, JHEP, Volume 0109 (2001), p. 030 | arXiv

[26] M.R. Douglas; S. Govindarajan; T. Jayaraman; A. Tomasiello D-branes on Calabi–Yau manifolds and superpotentials | arXiv

[27] S. Kachru; S. Katz; A.E. Lawrence; J. McGreevy Open string instantons and superpotentials, Phys. Rev. D, Volume 62 (2000), p. 026001 | arXiv

[28] I. Brunner; V. Schomerus On superpotentials for D-branes in Gepner models, JHEP, Volume 0010 (2000), p. 016 | arXiv

[29] I. Brunner; K. Hori; K. Hosomichi; J. Walcher Orientifolds of Gepner models | arXiv

[30] I. Brunner; M. Herbst; W. Lerche; J. Walcher Matrix factorizations and mirror symmetry: the cubic curve | arXiv

Cité par Sources :

Commentaires - Politique