Comptes Rendus
Physics/Solids, fluids: structure
Nanowires with finite radii formed in operating liquid metal ion sources (LMIS)
[Nanofils de rayon fini formés dans des sources à évaporation de champ en cours de fonctionnement.]
Comptes Rendus. Physique, Volume 5 (2004) no. 8, pp. 933-939.

Les ions produits par évaporation de champ ont été analysés par spectrographie de masse. Les spectres présentent pour certains éléments des périodicités remarquables, c'est-à-dire des séries de pics équidistants séparés par un nombre d'atomes, ν, constant. Nous montrons que ces particules sont vraisemblablement produites à partir de jets terminés par un cylindre dont la section comporte ν atomes. Les Ge6m+13+ et Sn6m+13+, avec m=3 à 8, et les Ge6m+43+, avec m=9 à 14, observés proviendraient ainsi de jets avec ν=6. Nous examinons aussi le bismuth et l'or. Dans ce dernier cas, le modèle permet d'interpréter la présence encore inexpliquée de l'ion Au83+.

For some elements such as germanium or tin, the mass spectra of ions emitted by liquid metal ion sources (LMIS) exhibit periodicities, i.e. series of equidistant peaks with an increase, ν, in the number of atoms between two peaks. We attribute it to the existence of jets in operating LMIS, the upper part of them being cylinders with ν-atom sections. The Ge6m+13+ and Sn6m+13+, m=3 to 8, and Ge6m+43+, m=9 to 14, observed ions can be explained by this mechanism, here ν=6. We extend this mechanism to bismuth and gold and, in this last case, it allows the interpretation of a yet unexplained Au83+ ion.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2004.10.009
Keywords: Liquid metal ion source, Nanowire, Finite radius, Mass spectrum, Two-dimension jellium
Mot clés : Source à évaporation de champ, Nanofils, Rayon fini, Spectre de masse, Jellium à deux dimensions

Pierre Joyes 1 ; Jean Van de Walle 1 ; René-Jean Tarento 1

1 Laboratoire de physique des solides, Université Paris-Sud, bâtiment 510, 91405 Orsay, France
@article{CRPHYS_2004__5_8_933_0,
     author = {Pierre Joyes and Jean Van de Walle and Ren\'e-Jean Tarento},
     title = {Nanowires with finite radii formed in operating liquid metal ion sources {(LMIS)}},
     journal = {Comptes Rendus. Physique},
     pages = {933--939},
     publisher = {Elsevier},
     volume = {5},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crhy.2004.10.009},
     language = {en},
}
TY  - JOUR
AU  - Pierre Joyes
AU  - Jean Van de Walle
AU  - René-Jean Tarento
TI  - Nanowires with finite radii formed in operating liquid metal ion sources (LMIS)
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 933
EP  - 939
VL  - 5
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.10.009
LA  - en
ID  - CRPHYS_2004__5_8_933_0
ER  - 
%0 Journal Article
%A Pierre Joyes
%A Jean Van de Walle
%A René-Jean Tarento
%T Nanowires with finite radii formed in operating liquid metal ion sources (LMIS)
%J Comptes Rendus. Physique
%D 2004
%P 933-939
%V 5
%N 8
%I Elsevier
%R 10.1016/j.crhy.2004.10.009
%G en
%F CRPHYS_2004__5_8_933_0
Pierre Joyes; Jean Van de Walle; René-Jean Tarento. Nanowires with finite radii formed in operating liquid metal ion sources (LMIS). Comptes Rendus. Physique, Volume 5 (2004) no. 8, pp. 933-939. doi : 10.1016/j.crhy.2004.10.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.10.009/

[1] S. Iijima Helical microtubules of graphitic carbon, Nature, Volume 354 (1991), pp. 56-58

[2] Y. Kondo; K. Takayanagi Synthesis and characterization of helical multi-shell gold nanowires, Science, Volume 289 (2000), pp. 606-608

[3] H. Ohnishi; Y. Kondo; K. Takayanagi Quantized conductance through individual rows of suspended gold atoms, Nature, Volume 395 (1998), pp. 780-783

[4] Y. Oshima; H. Koizumi; K. Mouri; H. Hirayama; K. Takayanagi; Y. Kondo Evidence of single-wall platinum nanotube, Phys. Rev. B, Volume 65 (2002), pp. 121401-121404

[5] M. Kociak; O. Stéphan; L. Henrard; V. Charbois; A. Rotschild; R. Tenne; C. Colliex Experimental evidence of surface-plasmon coupling in Anisotropic Hollow Nanoparticles, Phys. Rev. Lett., Volume 87 (2001), pp. 75501-75504

[6] A. Loiseau; F. Willaime; N. Demoncy; G. Hug; H. Pascard Boron nitride nanotubes with reduced numbers of layers synthetized by arc discharge, Phys. Rev. Lett., Volume 76 (1996), pp. 4737-4740

[7] Y. Naitoh; K. Takayanagi; Y. Oshima; H. Hirayama Simultaneous STL and UHV electron microscope observation of silicon nanowires extracted from Si(111) surface, J. Electron Microsc., Volume 49 (2000), pp. 211-216

[8] G. Benassayag; P. Sudraud; B. Jouffrey In situ high voltage TEM observation of an electrohydrodynamic (EHD) ion source, Ultramicroscopy, Volume 16 (1985), pp. 1-8

[9] D.R. Kingham; L.W. Swanson Shape of a liquid metal ion source, Appl. Phys. A, Volume 34 (1984), pp. 123-132

[10] G. Forbes Understanding how the liquid metal ion sources works, Vacuum, Volume 48 (1997), pp. 85-97

[11] T.T. Tsong Field ion image, Surf. Sci., Volume 70 (1978), pp. 211-233

[12] N.D. Bhaskar; R.P. Frueholz; C.M. Klimcak; R.A. Cook Evidence of electronic shell structure in RbN+ (N=1–100) produced in a liquid–metal ion source, Phys. Rev. B, Volume 36 (1987), pp. 4418-4421

[13] J. Van de Walle; P. Joyes Périodicités remarquables (modulo 4 ou 6) dans les stabilités d'amas de carbone et d'étain, J. Phys. Paris, Volume 46 (1985), pp. 1223-1226

[14] J. Van de Walle; P. Joyes Remarkable periodicity of Genp+ ions (n/p25, 1p4) formed by the liquid–metal ion-source technique, Phys. Rev. B, Volume 32 (1985), pp. 8381-8383

[15] J. Van de Walle; P. Joyes Study of Binp+ ions formed in liquid–metal ion sources, Phys. Rev. B, Volume 35 (1987), pp. 5509-5513

[16] P. Joyes; J. Van de Walle Sur la distribution énergétique des ions moléculaires produits par évaporation de champ à partir de pointes liquides, J. Phys. Paris, Volume 47 (1986), pp. 821-827

[17] V.K. Medvedev; V.I. Chernyi; N.N. Popovitch Angular and energy distribution of ions emitted from a GaIn liquid alloy ion source, J. Vac. Sci. Technol. B, Volume 11 (1993), pp. 523-526

[18] J.M. Hunter; J.L. Fye; M.F. Jarrold; J.E. Bower Structural transitions in size-selected germanium cluster ions, Phys. Rev. Lett., Volume 73 (1994), pp. 2063-2066

[19] A.A. Shvartsburg; M.F. Jarrold Tin clusters adopt prolate geometries, Phys. Rev. A, Volume 60 (1999), pp. 1235-1239

[20] J.L. Elkind; J.M. Alford; F.D. Weiss; R.T. Laaksonen; R.E. Smalley FT-ICR probes of silicon cluster chemistry: the special behaviour of Si39+, J. Chem. Phys., Volume 87 (1987), pp. 2397-2399

[21] J.C. Phillips Morphology of medium-size silicon clusters, J. Chem. Phys., Volume 88 (1988), pp. 2090-2091

[22] D.A. Jelski; Z.C. Whu; T.F. George Large silicon clusters: confirmation of Philipps' conjecture, Chem. Phys. Lett., Volume 150 (1988), pp. 447-451

[23] K.M. Ho; A.A. Shwartsburg; B. Pan; Z.Y. Lu; C.Z. Wang; J.G. Wacker; J.L. Fye; M.F. Jarrold Structures of medium-sized silicon clusters, Nature, Volume 392 (1998), pp. 582-585

[24] P. Sudraud; C. Colliex; J. Van de Walle Energy distribution of EHD emitted gold ions, J. Phys. Paris, Volume 40 (1979), p. L207-L211

[25] G. Benassayag, Thèse, Université Paul Sabatier Toulouse, 1984

[26] I. Katakuse; T. Ichihara; Y. Fujita; T. Matsuo; T. Sakurai; H. Matsuda Mass distributions of negative cluster ions of copper, silver and gold, Int. J. Mass Spectrom., Volume 74 (1986), pp. 33-41

[27] W.D. Knight; K. Clemenger; W.A. de Heer; W.A. Saunders; M.Y. Chou; M.L. Cohen Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett., Volume 52 (1984), pp. 2141-2143

Cité par Sources :

Commentaires - Politique