Comptes Rendus
The Near Earth Objects: possible impactors of the Earth/Les astéroïdes geocroiseurs : impacteurs potentiels de la Terre
Origin and dynamics of Near Earth Objects
[Origine et dynamique des objets croiseurs de la terre]
Comptes Rendus. Physique, Volume 6 (2005) no. 3, pp. 291-301.

La population des Near-Earth Objects (NEOs) évolue sur des orbites qui peuvent croiser celle de la Terre. La plupart des NEOs proviennent de la ceinture des astéroïdes depuis des zones instables associées à des résonances puissantes ou diffusives. Les routes utilisées et les propriétés statistiques de leur dynamique ont été déterminées par intégrations numériques massives. Un modèle stationnaire des distributions de leurs orbites et de leurs magnitudes a été élaboré. Il indique que 1000 NEOs sont plus grands qu'un kilomètre et ont une fréquence d'impact avec la Terre autour de 0.5 Ma. Un mécanisme non-gravitationnel, l'effet thermique Yarkovsky, joue le rôle dominant pour délivrer du matériel dans les régions sources des NEOs, expliquant comment cette population est maintenue dans un état stationnaire et pourquoi sa distribution des tailles est moins pentue que celle produite par l'injection directe dans les résonances de fragments produits par les collisions entre astéroïdes.

The population of Near-Earth Objects (NEOs) evolves on orbits which can cross the orbit of the Earth. Most NEOs come from the asteroid belt via unstable zones associated with powerful or diffusive resonances. Their evolutionary paths and the statistical properties of their dynamics have been determined by massive numerical integrations. A steady-state model of their orbital and magnitude distributions has been elaborated which indicates that 1000 NEOs are kilometre-size with an impact frequency with the Earth around 0.5 Myr. A non-gravitational mechanism, the Yarkovsky thermal drag, plays the dominant role in delivering material in the NEO source regions, explaining how this population is maintained in a steady-state and why its size distribution is shallower than expected if NEOs were created through the direct injection of fresh fragments from collisional break ups into resonances.

Publié le :
DOI : 10.1016/j.crhy.2004.12.013
Keywords: Asteroids, Chaos, Comets, Dynamics, Impacts, Planetary close approaches, Resonances
Mot clés : Astéroïdes, Chaos, Dynamique, Impacts, Rencontres planétaires, Résonances
Patrick Michel 1 ; Alessandro Morbidelli 1 ; William F. Bottke 2

1 Observatoire de la Côte d'Azur, UMR 6202 Cassiopée/CNRS, BP 4229, 06304 Nice cedex 4, France
2 Southwest Research Institute, Department of Space Studies, 1050 Walnut St., Boulder CO 80302, USA
@article{CRPHYS_2005__6_3_291_0,
     author = {Patrick Michel and Alessandro Morbidelli and William F. Bottke},
     title = {Origin and dynamics of {Near} {Earth} {Objects}},
     journal = {Comptes Rendus. Physique},
     pages = {291--301},
     publisher = {Elsevier},
     volume = {6},
     number = {3},
     year = {2005},
     doi = {10.1016/j.crhy.2004.12.013},
     language = {en},
}
TY  - JOUR
AU  - Patrick Michel
AU  - Alessandro Morbidelli
AU  - William F. Bottke
TI  - Origin and dynamics of Near Earth Objects
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 291
EP  - 301
VL  - 6
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.12.013
LA  - en
ID  - CRPHYS_2005__6_3_291_0
ER  - 
%0 Journal Article
%A Patrick Michel
%A Alessandro Morbidelli
%A William F. Bottke
%T Origin and dynamics of Near Earth Objects
%J Comptes Rendus. Physique
%D 2005
%P 291-301
%V 6
%N 3
%I Elsevier
%R 10.1016/j.crhy.2004.12.013
%G en
%F CRPHYS_2005__6_3_291_0
Patrick Michel; Alessandro Morbidelli; William F. Bottke. Origin and dynamics of Near Earth Objects. Comptes Rendus. Physique, Volume 6 (2005) no. 3, pp. 291-301. doi : 10.1016/j.crhy.2004.12.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.12.013/

[1] P. Michel; V. Zappalà; A. Cellino; P. Tanga Icarus, 143 (2000), pp. 421-424

[2] R.A. Grieve; E.M. Shoemaker Hazards Due to Comets and Asteroids (T. Gehrels; M.S. Matthews, eds.), University of Arizona Press, Tucson, 1994, p. 417

[3] V. Zappalà; A. Cellino; A. Dell'Oro; P. Paolicchi Asteroids III (W.F. Bottke et al., eds.), University of Arizona Press, Tucson, 2002, pp. 619-631

[4] A. Morbidelli; W.F. Bottke; Ch. Froeschlé; P. Michel Asteroids III (W.F. Bottke et al., eds.), University of Arizona Press, Tucson, 2002, pp. 409-422

[5] G.W. Wetherill Where do the meteorites come from? A re-evaluation of the Earth-crossing Apollo objects as sources of chondritic meteorites, Geochim. Cosmochim. Acta, Volume 40 (1976), p. 1297

[6] P. Farinella; Ch. Froeschlé; C. Froeschlé; R. Gonczi; G. Hahn; A. Morbidelli; G.B. Valsecchi Asteroids falling onto the Sun, Nature, Volume 371 (1994), p. 315

[7] H.F. Levison; M.J. Duncan The long-term dynamical behaviour of short-period comets, Icarus, Volume 108 (1994), pp. 18-36

[8] J. Wisdom; M. Holman Symplectic maps for the N-body problem, Astron. J., Volume 102 (1991), pp. 1528-1534

[9] D. Nesvorny; S. Ferraz-Mello; M. Holman; A. Morbidelli Asteroids III (W.F. Bottke et al., eds.), University of Arizona Press, Tucson, 2002, pp. 379-394

[10] A. Morbidelli Modern Celestial Mechanics: Aspects of Solar System Dynamics, Gordon and Breach, London, 2001

[11] B. Gladman; F. Migliorini; A. Morbidelli; V. Zappalà; P. Michel; A. Cellino; Ch. Froeschlé; H. Levison; M. Bailey; M. Duncan Dynamical lifetimes of objects injected into asteroid belt resonances, Science, Volume 277 (1997), pp. 197-201

[12] W.F. Bottke; A. Morbidelli; R. Jedicke; J.M. Petit; H.F. Levison; P. Michel; T.S. Metcalfe Debiased orbital and size distribution of the Near Earth Objects, Icarus, Volume 156 (2002), pp. 399-433

[13] A. Morbidelli; B. Gladman Orbital and temporal distribution of meteorites originating in the asteroid belt, Meteoritics and Planetary Science, Volume 33 (1998), pp. 999-1016

[14] N. Murray; M. Holman; M. Potter On the origin of chaos in the asteroid belt, Astron. J., Volume 116 (1998), pp. 2583-2589

[15] D. Nesvorny; A. Morbidelli Three–body mean motion resonances and the chaotic structure of the asteroid belt, Astron. J., Volume 116 (1998), pp. 3026-3029

[16] D. Nesvorny; A. Morbidelli An analytic model of three-body mean motion resonances, Celest. Mech. Dyn. Astron., Volume 71 (1999), pp. 243-261

[17] A. Morbidelli; D. Nesvorny Numerous weak resonances drive asteroids towards terrestrial planets orbits, Icarus, Volume 139 (1999), pp. 295-308

[18] N. Murray; M. Holman Diffusive chaos in the outer asteroid belt, Astron. J., Volume 114 (1997), pp. 1246-1252

[19] F. Migliorini; P. Michel; A. Morbidelli; D. Nesvorny; V. Zappalà Origin of Multikilometer Earth- and Mars-crossing asteroids: a quantitative simulation, Science, Volume 281 (1998), pp. 2022-2024

[20] P. Michel; F. Migliorini; A. Morbidelli; V. Zappalà The population of Mars-crossers: classification and dynamical evolution, Icarus, Volume 145 (2000), pp. 332-347

[21] H.F. Levison; M.J. Duncan From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets, Icarus, Volume 127 (1997), pp. 13-32

[22] P.A. Wiegert; S. Tremaine The evolution of long-period comets, Icarus, Volume 137 (1999), pp. 84-121

[23] H.F. Levison; A. Morbidelli; L. Dones; R. Jedicke; P.A. Wiegert; W.F. Bottke The mass disruption of Oort cloud comets, Science, Volume 296 (2002), pp. 2212-2215

[24] P.R. Weissman; W.F. Bottke; H.F. Levison Asteroids III (W.F. Bottke et al., eds.), University of Arizona Press, Tucson, 2002, pp. 669-686

[25] E.J. Öpik Interplanetary Encounters, Elsevier, Amsterdam, 1976

[26] P. Michel; Ch. Froeschlé; P. Farinella Dynamical evolution of NEAs: close encounters, secular perturbations and resonances, Earth Moon Planets, Volume 72 (1996), pp. 151-164

[27] B. Gladman; P. Michel; Ch. Froeschlé The Near-Earth Object population, Icarus, Volume 146 (2000), pp. 176-189

[28] P. Michel; Ch. Froeschlé; P. Farinella Dynamical evolution of two near-Earth asteroids to be explored by spacecraft: (433) Eros and (4660) Nereus, Astron. Astrophys., Volume 313 (1996), pp. 993-1007

[29] P. Michel; Ch. Froeschlé The location of linear secular resonances for semimajor axes smaller than 2 AU, Icarus, Volume 128 (1997), pp. 230-240

[30] P. Michel Effects of linear secular resonances in the region of semimajor axes smaller than 2 AU, Icarus, Volume 129 (1997), pp. 348-366

[31] P. Michel; F. Thomas The Kozai resonance for near-Earth asteroids with semimajor axes smaller than 2 AU, Astron. Astrophys., Volume 307 (1996), pp. 310-318

[32] G.F. Gronchi; A. Milani The stable Kozai state for asteroids and comets with arbitrary semimajor axis and inclination, Astron. Astrophys., Volume 341 (1999), pp. 928-937

[33] A. Milani; S. Baccili Dynamics of Earth-crossing asteroids: the protected Toro orbits, Celest. Mech. Dyn. Astron., Volume 71 (1998), pp. 35-53

[34] P. Michel Overlapping of secular resonances in a Venus horseshoe orbit, Astron. Astrophys., Volume 328 (1997), p. L5-L8

[35] A. Christou A numerical survey of transient co-orbitals of the terrestrial planets, Icarus, Volume 144 (2000), pp. 1-20

[36] F. Namouni Secular interactions of coorbiting objects, Icarus, Volume 137 (1999), pp. 293-314

[37] R. Brasser; K.A. Innanen; M. Connors; C. Veillet; P. Wiegert; S. Mikkola; P.W. Chodas Transient co-orbital asteroids, Icarus, Volume 171 (2004), pp. 102-109

[38] R. Jedicke; J. Larsen; T. Spahr Asteroids III (W.F. Bottke et al., eds.), University of Arizona Press, Tucson, 2002, pp. 71-87

[39] J.S. Stuart A near-Earth asteroid population estimate from the LINEAR survey, Science, Volume 294 (2001), pp. 1691-1693

[40] G.W. Wetherill Steady–state populations of Apollo-Amor objects, Icarus, Volume 37 (1979), pp. 96-112

[41] D.L. Rabinowitz Are main-belt asteroids a sufficient source for the Earth-approaching asteroids? Part I. Predicted vs. Observed orbital distributions, Icarus, Volume 127 (1997), pp. 33-54

[42] W.F. Bottke; R. Jedicke; A. Morbidelli; J.M. Petit; B. Gladman Understanding the distribution of near-Earth asteroids, Science, Volume 288 (2000), pp. 2190-2194

[43] R. Jedicke Detection of near-Earth asteroids based upon their rates of motion, Astron. J., Volume 111 (1996), pp. 970-983

[44] A. Morbidelli; R. Jedicke; W.F. Bottke; P. Michel; E.F. Tedesco From magnitudes to diameters: the albedo distribution of near-Earth objects and the Earth collision hazard, Icarus, Volume 158 (2002), pp. 329-342

[45] W.F. Bottke; M.C. Nolan; R. Greenberg; R.A. Kolvoord Velocity distributions among colliding asteroids, Icarus, Volume 107 (1994), pp. 255-268

[46] E.J. Öpik Collision probabilities with the planets and the distribution of interplanetary matter, Proc. Roy. Irish Acad. Ser. A, Volume 54 (1951), pp. 165-199

[47] G.W. Wetherill Collisions in the asteroid belt, J. Geophys. Res., Volume 72 (1967), pp. 2429-2444

[48] R. Greenberg Orbital interactions – a new geometrical formalism, Astron. J., Volume 87 (1982), pp. 184-195

[49] D. Morrison, The Spaceguard survey: report of the NASA international Near Earth Object detection workshop, QB651 N37, JPL/CalTech, Pasadena, 1992

[50] P. Tanga; A. Cellino; P. Michel; V. Zappalà; P. Paolicchi; A. Dell'Oro On the size distribution of asteroid families: the role of geometry, Icarus, Volume 141 (1999), pp. 65-78

[51] A. Campo Bagatin; V.J. Martinez; S. Paredes Multinomial fits to the observed main belt asteroid distribution (abstract), Am. Astron. Soc. B., Volume 32 (2000), p. 813

[52] M. Menichella; P. Paolicchi; P. Farinella The main belt as a source of near-Earth asteroids, Earth Moon and Planets, Volume 72 (1996), pp. 133-149

[53] V. Zappalà; A. Cellino; A. Dell'Oro A search for the collisional parent bodies of large NEAs, Icarus, Volume 157 (2002), pp. 280-296

[54] R. Jedicke; T.S. Metcalfe The orbital and absolute magnitude distributions of main belt asteroids, Icarus, Volume 131 (1998), pp. 245-260

[55] D.D. Durda; R. Greenberg; R. Jedicke Collisional models and scaling laws: a new interpretation of the shape of the main-belt asteroid size distribution, Icarus, Volume 135 (1998), pp. 431-440

[56] Z. Ivezic et al. Solar system objects observed in the Sloan digital sky survey commissioning data, Astron. J., Volume 122 (2001), pp. 2749-2784

[57] F. Yoshida; T. Nakamura; T. Fuse; Y. Komiyama; M. Yagi; S. Miyazaki; S. Okamura; M. Ouchi; M. Miyazaki First Subaru observations of sub-km main belt asteroids, Nat. Astron. Obs. Report, Volume 99 (2001), pp. 1-11

[58] P. Farinella; D. Vokrouhlicky Semimajor axis mobility of asteroidal fragments, Science, Volume 283 (1999), pp. 1507-1510

[59] W.F. Bottke; D. Vokrouhlicky; D.P. Rubincam; M. Broz Asteroids III (W.F. Bottke et al., eds.), University of Arizona Press, Tucson, 2002, pp. 395-408

[60] A. Morbidelli; D. Vokrouhlicky The Yarkovsky-driven origin of near-Earth asteroids, Icarus, Volume 163 (2003), pp. 120-134

[61] D. Rabinowitz; E. Helin; K. Lawrence; S. Pravdo A reduced estimate of the number of kilometre-sized near-Earth asteroids, Nature, Volume 403 (2000), pp. 165-166

[62] J.S. Stuart; R.P. Binzel Bias-corrected population, size distribution, and impact hazard for the near-Earth objects, Icarus, Volume 170 (2004), pp. 295-311

[63] R.P. Binzel; A.S. Rivkin; J.S. Stuart; A.W. Harris; S.J. Bus; T.H. Burbine Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes, Icarus, Volume 170 (2004), pp. 259-294

[64] M. Delbo; A.W. Harris; R.P. Binzel; P. Pravec; J.K. Davies Keck observations of near-Earth asteroids in the thermal infrared, Icarus, Volume 166 (2003), pp. 116-130

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Surface compositions of NEOs

Elisabetta Dotto; M. Antonietta Barucci; Richard P. Binzel; ...

C. R. Phys (2005)


NEO sizes, shapes and surface physical properties

A. Chantal Levasseur-Regourd; Marcello Fulchignoni; Marco Delbó; ...

C. R. Phys (2005)