Comptes Rendus
The Near Earth Objects: possible impactors of the Earth/Les astéroïdes geocroiseurs : impacteurs potentiels de la Terre
Meteorites: samples of NEOs in the laboratory
[Météorites : échantillons de NEOs au laboratoire]
Comptes Rendus. Physique, Volume 6 (2005) no. 3, pp. 345-360.

Les météorites peuvent être considérées comme des échantillons d'objets proches de la Terre (‘NEOs’) et en tant que telles elles peuvent être utiles pour prévoir les propriétés de ceux-ci, notamment de ceux qui pourraient tomber sur Terre dans le futur. Cet article passe en revue les principales propriétés des météorites qui peuvent présenter un intérêt dans la recherche sur les NEOs. On rappelle d'abord les caractéristiques de la chute d'une météorite et les biais qu'elle introduit dans le passage de la population des météoroïdes proches de la Terre à la population des météorites. On décrit ensuite plus en détail la composition minéralogique et chimique des différentes classes de météorites. Les Sections 4 et 5 traitent respectivement des relations entre météorites et astéroïdes telles qu'on peut les déduire de la spectroscopie en réflectance, et de la porosité des météorites. Les ages des météorites, et plus particulièrement l'age d'exposition au rayonnement cosmique, sont abordés dans la dernière section.

Meteorites can be considered as samples of near-Earth objects (NEOs), and as such they may be useful for inferring the properties of the latter, including those that may encounter the Earth in the future. This article reviews the main properties of meteorites which can be of interest in NEO research. We first briefly recall the characteristics of a meteorite fall and the biases it introduces in the passage from the near Earth meteoroid population to the meteorite population. We then describe in more detail the mineralogical and chemical composition of the various classes of meteorites. The relations between meteorites and asteroids that can be inferred from reflectance spectroscopy, and the porosity of meteorites are treated in Sections 4 and 5, respectively. The last section deals with meteorite ages, with emphasis on the cosmic ray exposure age.

Publié le :
DOI : 10.1016/j.crhy.2005.01.005
Keywords: NEO, Meteorites, Reflectance spectroscopy
Mot clés : NEO, Météorites, Spectroscopie en réflectance
Claude Perron 1 ; Brigitte Zanda 1

1 Laboratoire d'étude de la matière extraterrestre, Muséum national d'histoire naturelle, 75005 Paris, France
@article{CRPHYS_2005__6_3_345_0,
     author = {Claude Perron and Brigitte Zanda},
     title = {Meteorites: samples of {NEOs} in the laboratory},
     journal = {Comptes Rendus. Physique},
     pages = {345--360},
     publisher = {Elsevier},
     volume = {6},
     number = {3},
     year = {2005},
     doi = {10.1016/j.crhy.2005.01.005},
     language = {en},
}
TY  - JOUR
AU  - Claude Perron
AU  - Brigitte Zanda
TI  - Meteorites: samples of NEOs in the laboratory
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 345
EP  - 360
VL  - 6
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.01.005
LA  - en
ID  - CRPHYS_2005__6_3_345_0
ER  - 
%0 Journal Article
%A Claude Perron
%A Brigitte Zanda
%T Meteorites: samples of NEOs in the laboratory
%J Comptes Rendus. Physique
%D 2005
%P 345-360
%V 6
%N 3
%I Elsevier
%R 10.1016/j.crhy.2005.01.005
%G en
%F CRPHYS_2005__6_3_345_0
Claude Perron; Brigitte Zanda. Meteorites: samples of NEOs in the laboratory. Comptes Rendus. Physique, Volume 6 (2005) no. 3, pp. 345-360. doi : 10.1016/j.crhy.2005.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.01.005/

[1] P.M. Millman Meteor news, J. Roy. Astron. Soc. Can., Volume 55 (1961), pp. 265-267

[2] P. Brown; Z. Ceplecha; R.L. Hawkes; G. Wetherill; M. Beech; K. Mossman The orbit and atmospheric trajectory of the Peekskill meteorite from video records, Nature, Volume 367 (1994), pp. 624-626

[3] J. Koblitz, MetBase 6.0, Meteorite data retrieval software, 2003, CD-ROM

[4] H. Campins; T.D. Swindle Expected characteristics of cometary meteorites, Meteorit. Planet. Sci., Volume 33 (1998), pp. 1201-1211

[5] M. Gounelle; P. Spurny; P.A. Bland The orbit of the Orgueil meteorite from historical records (abstract), Meteorit. Planet. Sci., Volume 39 (2004) no. Suppl., p. A45

[6] C.F. Chyba; P.J. Thomas; K.J. Zahnle The 1908 Tunguska explosion – atmospheric disruption of a stony asteroid, Nature, Volume 361 (1993), pp. 40-44

[7] C.F. Chyba Explosions of small Spacewatch objects in the Earth's atmosphere, Nature, Volume 363 (1993), pp. 701-703

[8] J.G. Hills; M.P. Goda The fragmentation of small asteroids in the atmosphere, Astron. J., Volume 105 (1993), pp. 1114-1144

[9] V.V. Svetsov; I.V. Nemtchinov; A.V. Teterev Disintegration of large meteoroids in Earth's atmosphere: theoretical models, Icarus, Volume 116 (1995), pp. 131-153

[10] V.V. Shuvalov; N.A. Artemieva Numerical modeling of Tunguska-like impacts, Planet. Space Sci., Volume 50 (2002), pp. 181-192

[11] E. Tagliaferri; R. Spalding; C. Jacobs; S.P. Worden; A. Erlich Detection of meteoroid impacts by optical sensors in Earth orbit (T. Gehrels, ed.), Hazards Due to Comets and Asteroids, University of Arizona Press, Tucson, 1994, pp. 199-220

[12] H.J. Melosh Impact Cratering: A Geologic Process, Oxford University Press, New York, 1989

[13] R.A.F. Grieve; E.M. Shoemaker The record of past impacts on Earth (T. Gehrels, ed.), Hazards due to Comets and Asteroids, University of Arizona Press, Tucson, 1994, pp. 417-462

[14] Earth Impact Database, 2003, http://www.unb.ca/passc/ImpactDatabase/ (accessed: 5 October 2004)

[15] A.R. Hildebrand; G.T. Penfield; D.A. Kring; M. Pilkington; A.Z. Camargo; S.B. Jacobsen; W.V. Boynton Chicxulub Crater: a possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Geology, Volume 19 (1991), pp. 867-871

[16] R. Grieve; A. Therriault Vredefort, Sudbury, Chicxulub: three of a Kind?, Annu. Rev. Earth Planet. Sci., Volume 28 (2000), pp. 305-338

[17] E. Anders; N. Grevesse Abundances of the elements – meteoritic and solar, Geochim. Cosmochim. Acta, Volume 53 (1989), pp. 197-214

[18] R.N. Clayton Oxygen isotopes in meteorites, Annu. Rev. Earth Planet. Sci., Volume 21 (1993), pp. 115-149

[19] W.R. Van Schmus; J.A. Wood A chemical-petrologic classification for the chondritic meteorites, Geochim. Cosmochim. Acta, Volume 31 (1967), pp. 747-765

[20] E. Jarosewich Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses, Meteoritics, Volume 25 (1990), pp. 323-337

[21] R.H. Hewins Chondrules, Annu. Rev. Earth Planet. Sci., 25 (1997), p. 61

[22] B. Zanda Chondrules, Earth Planet. Sci. Lett., Volume 224 (2004), pp. 1-17

[23] H.C. Connolly; S.G. Love The formation of chondrules: petrologic tests of the shock wave model, Science, Volume 280 (1998), pp. 62-67

[24] S.J. Desch; H.C. Connolly A model of the thermal processing of particles in solar nebula shocks: application to the cooling rates of chondrules, Meteorit. Planet. Sci., Volume 37 (2002), pp. 183-207

[25] F.H. Shu; H. Shang; T. Lee Toward an astrophysical theory of chondrites, Science, Volume 271 (1996), pp. 1545-1552

[26] F.H. Shu; H. Shang; M. Gounelle; A.E. Glassgold; T. Lee The origin of chondrules and refractory inclusions in chondritic meteorites, Astrophys. J., Volume 548 (2001), pp. 1029-1050

[27] J.R. Cronin; S. Pizzarello; D.P. Cruikshank Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets (J.F. Kerridge; M.S. Matthews, eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, 1988, pp. 819-857

[28] F. Robert; D. Gautier; B. Dubrulle The solar system D/H ratio: observations and theories, Space Sci. Rev., Volume 92 (2000), pp. 201-224

[29] C. Ceccarelli Millimeter and infrared observations of deuterated molecules, Planet. Space Sci., Volume 50 (2002), pp. 1267-1273

[30] E.R.D. Scott; J.T. Wasson Classification and properties of iron meteorites, Rev. Geophys. Space Phys., Volume 13 (1975), pp. 527-546

[31] E.R.D. Scott; H. Haack; S.G. Love Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid, Meteorit. Planet. Sci., Volume 36 (2001), pp. 869-891

[32] A.E. Rubin; D.W. Mittlefehldt Evolutionary history of the mesosiderite asteroid – a chronologic and petrologic synthesis, Icarus, Volume 101 (1993), pp. 201-212

[33] T. Hiroi; C.M. Pieters; M.E. Zolensky; M.E. Lipschutz Evidence for thermal metamorphism on the C, G, B, and F asteroids, Science, Volume 261 (1993), pp. 1016-1018

[34] T.H. Burbine Could G-class asteroids be the parent bodies of the CM chondrites?, Meteorit. Planet. Sci., Volume 33 (1998), pp. 253-258

[35] T.H. Burbine; R.P. Binzel; S.J. Bus; B.E. Clark K asteroids and CO3/CV3 chondrites, Meteorit. Planet. Sci., Volume 36 (2001), pp. 245-253

[36] T. Hiroi; M.E. Zolensky; C.M. Pieters The Tagish Lake meteorite: a possible sample from a D-type asteroid, Science, Volume 293 (2001), pp. 2234-2236

[37] M.A. Barucci; E. Dotto; J.R. Brucato; T.G. Muller; P. Morris; A. Doressoundiram; M. Fulchignoni; M.C. De Sanctis; T. Owen; J. Crovisier 10 Hygiea: ISO infrared observations, Icarus, Volume 156 (2002), pp. 202-210

[38] T.B. McCord; J.B. Adams; T.V. Johnson Asteroid Vesta: spectral reflectivity and compositional implications, Science, Volume 168 (1970), pp. 1445-1447

[39] M.J. Drake Geochemical evolution of the eucrite parent body – possible nature and evolution of asteroid 4 Vesta (T. Gehrels, ed.), Asteroids, University of Arizona Press, 1979, pp. 765-782

[40] R.P. Binzel; S. Xu Chips off of asteroid – 4 Vesta – evidence for the parent body of basaltic achondrite meteorites, Science, Volume 260 (1993), pp. 186-191

[41] J.T. Wasson, C.R. Chapman, Space weathering of basalt-covered asteroids: Vesta an unlikely source of the HED meteorites (abstract), in: Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, 1996, LPI Tech. Report 96-02

[42] A. Jambon, Isotopic zoning in the inner Solar System, in: Oxygen in the Terrestrial Planets, Santa Fe, 2004

[43] P.C. Thomas; R.P. Binzel; M.J. Gaffey; A.D. Storrs; E.N. Wells; B.H. Zellner Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results, Science, Volume 277 (1997), pp. 1492-1495

[44] R.P. Binzel; S. Xu; S.J. Bus; M.F. Skrutskie; M.R. Meyer; P. Knezek; E.S. Barker Discovery of a main-belt asteroid resembling ordinary chondrite meteorites, Science, Volume 262 (1993), pp. 1541-1543

[45] C.M. Pieters; L.A. Taylor; S.K. Noble; L.P. Keller; B. Hapke; R.V. Morris; C.C. Allen; D.S. McKay; S. Wentworth Space weathering on airless bodies: resolving a mystery with lunar samples, Meteorit. Planet. Sci., Volume 35 (2000), pp. 1101-1107

[46] S. Sasaki; K. Nakamura; Y. Hamabe; E. Kurahashi; T. Hiroi Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature, Volume 410 (2001), pp. 555-557

[47] C.R. Chapman S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo's fly-bys of Gaspra and Ida, Meteorit. Planet. Sci., Volume 31 (1996), pp. 699-725

[48] R. Jedicke; D. Nesvorny; R. Whiteley; Z. Ivezic; M. Juric An age-colour relationship for main-belt S-complex asteroids, Nature, Volume 429 (2004), pp. 275-277

[49] L.A. McFadden; M.J. Gaffey; T.B. McCord Near-Earth asteroids: possible sources from reflectance spectroscopy, Science, Volume 229 (1985), pp. 160-163

[50] M. Di Martino; A. Manara; F. Migliorini 1993 VW: an ordinary chondrite-like near-Earth asteroid, Astron. Astrophys., Volume 302 (1995), pp. 609-612

[51] M. Lazzarin; S. Marchi; M.A. Barucci; M. Di Martino; C. Barbieri Visible and near-infrared spectroscopic investigation of near-Earth objects at ESO: first results, Icarus, Volume 169 (2004), pp. 373-384

[52] R.P. Binzel; S.J. Bus; T.H. Burbine; J.M. Sunshine Spectral properties of near-Earth asteroids: evidence for sources of ordinary chondrite meteorites, Science, Volume 273 (1996), pp. 946-948

[53] R.P. Binzel; A.W. Harris; S.J. Bus; T.H. Burbine Spectral properties of Near-Earth Objects: Palomar and IRTF results for 48 objects including spacecraft targets (9969) Braille and (10302) 1989 ML, Icarus, Volume 151 (2001), pp. 139-149

[54] T.J. McCoy; T.H. Burbine; L.A. McFadden; R.D. Starr; M.J. Gaffey; L.R. Nittler; L.G. Evans; N. Izenberg; P. Lucey; J.I. Trombka; J.F. Bell; B.E. Clark; P.E. Clark; S.W. Squyres; C.R. Chapman; W.V. Boynton; J. Veverka The composition of 433 Eros: a mineralogical-chemical synthesis, Meteorit. Planet. Sci., Volume 36 (2001), pp. 1661-1672

[55] D.T. Britt; G.J. Consolmagno Stony meteorite porosities and densities: a review of the data through 2001, Meteorit. Planet. Sci., Volume 38 (2003), pp. 1161-1180

[56] G.J. Consolmagno; D.T. Britt The density and porosity of meteorites from the Vatican collection, Meteorit. Planet. Sci., Volume 33 (1998), pp. 1231-1241

[57] G.J. Consolmagno; D.T. Britt; C.P. Stoll The porosities of ordinary chondrites: models and interpretation, Meteorit. Planet. Sci., Volume 33 (1998), pp. 1221-1229

[58] G.J. Flynn; L.B. Moore; W. Klöck Density and porosity of stone meteorites: implications for the density, porosity, cratering, and collisional disruption of asteroids, Icarus, Volume 142 (1999), pp. 97-105

[59] M. Terho; L.J. Pesonen; I.T. Kukkonen The petrophysical classification of meteorites, Stud. Geophys. Geod., Volume 37 (1993), pp. 65-82

[60] D.T. Britt; D. Yeomans; K. Housen; G. Consolmagno Asteroid density, porosity, and structure (W.F. Bottke; A. Cellino; P. Paolicchi; R.P. Binzel, eds.), Asteroids III, University of Arizona Press, Tucson, 2002, pp. 485-500

[61] M.W. Caffee; R.C. Reedy; J.N. Goswami; C.M. Hohenberg; K. Marti Irradiation records in meteorites (J.F. Kerridge; M.S. Matthews, eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, 1988, pp. 205-245

[62] K. Marti; T. Graf Cosmic-ray exposure history of ordinary chondrites, Annu. Rev. Earth Planet. Sci., Volume 20 (1992), pp. 221-243

[63] K.C. Welten; L. Lindner; K. van der Borg; T. Loeken; P. Scherer; L. Schultz Cosmic-ray exposure ages of diogenites and the recent collisional history of the HED parent body/bodies, Meteorit. Planet. Sci., Volume 32 (1997), pp. 891-902

[64] B.J. Gladman; F. Migliorini; A. Morbidelli; V. Zappala; P. Michel; A. Cellino; C. Froeschle; H.F. Levison; M. Bailey; M. Duncan Dynamical lifetimes of objects injected into asteroid belt resonances, Science, Volume 277 (1997), pp. 197-201

[65] P. Farinella; D. Vokrouhlicky; W.K. Hartmann Meteorite delivery via Yarkovsky orbital drift, Icarus, Volume 132 (1998), pp. 378-387

[66] W.K. Hartmann; P. Farinella; D. Vokrouhlicky; S.J. Weidenschilling; A. Morbidelli; F. Marzari; D.R. Davis; E. Ryan Reviewing the Yarkovsky effect: new light on the delivery of stone and iron meteorites from the asteroid belt, Meteorit. Planet. Sci., Volume 34 (1999), pp. 161-167

[67] D. Vokrouhlicky; P. Farinella Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies, Nature, Volume 407 (2000), pp. 606-608

[68] B. Schmitz; M. Tassinari; B. Peucker-Ehrenbrink A rain of ordinary chondritic meteorites in the early Ordovician, Earth Planet. Sci. Lett., Volume 194 (2001), pp. 1-2

[69] B. Schmitz; T. Häggström; M. Tassinari Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event, Science, Volume 300 (2003), pp. 961-964

[70] P.R. Heck; B. Schmitz; H. Baur; A.N. Halliday; R. Wieler Fast delivery of meteorites to Earth after a major asteroid collision, Nature, Volume 430 (2004), pp. 323-325

[71] H. Haack; P. Farinella; E.R.D. Scott; K. Keil Meteoritic, asteroidal, and theoretical constraints on the 500 Ma disruption of the L chondrite parent body, Icarus, Volume 119 (1996), pp. 182-191

[72] G.R. Tilton Age of the solar system (J.F. Kerridge; M.S. Matthews, eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, 1988, pp. 259-275

[73] Y. Amelin; A.N. Krot; I.D. Hutcheon; A.A. Ulyanov Lead isotopic ages of chondrules and calcium–aluminum-rich inclusions, Science, Volume 297 (2002), pp. 1678-1683

[74] K. Nishiizumi; D. Elmore; P.W. Kubik Update on terrestrial ages of Antarctic meteorites, Earth Planet. Sci. Lett., Volume 93 (1989), pp. 299-313

[75] K.C. Welten; C. Alderliesten; K. van der Borg; L. Lindner; T. Loeken; L. Schultz Lewis Cliff 86360, an Antarctic L-chondrite with a terrestrial age of 2.35 million years, Meteorit. Planet. Sci., Volume 32 (1997), pp. 775-780

[76] M.M. Grady Catalogue of Meteorites, Cambridge University Press, Cambridge, 2000

[77] J.A. Barrat; J. Blichert-Toft; P. Gillet; F. Keller The differentiation of eucrites: the role of in situ crystallization, Meteorit. Planet. Sci., Volume 35 (2000), pp. 1087-1100

[78] D.W. Mittlefehldt; T.J. McCoy; C.A. Goodrich; A. Kracher Non-chondritic meteorites from asteroidal bodies (J.J. Papike, ed.), Planetary Materials, Mineralogical Society of America, Washington, 1998, pp. 1-195

[79] R.N. Clayton; N. Onuma; L. Grossman; T.K. Mayeda Distribution of the pre-solar component in Allende and other carbonaceous chondrites, Earth Planet. Sci. Lett., Volume 34 (1977), pp. 209-224

[80] H. Palme Chemical and isotopic heterogeneity in protosolar matter, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), p. 2061

[81] D.W.G. Sears; R.T. Dodd Overview and classification of meteorites (J.F. Kerridge; M.S. Matthews, eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, 1988, pp. 3-31

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Surface compositions of NEOs

Elisabetta Dotto; M. Antonietta Barucci; Richard P. Binzel; ...

C. R. Phys (2005)


Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models

Emmanuel Jacquet

C. R. Géos (2014)


Short-lived radioactive nuclides in meteorites and early solar system processes

Marc Chaussidon; Matthieu Gounelle

C. R. Géos (2007)