Meteorites can be considered as samples of near-Earth objects (NEOs), and as such they may be useful for inferring the properties of the latter, including those that may encounter the Earth in the future. This article reviews the main properties of meteorites which can be of interest in NEO research. We first briefly recall the characteristics of a meteorite fall and the biases it introduces in the passage from the near Earth meteoroid population to the meteorite population. We then describe in more detail the mineralogical and chemical composition of the various classes of meteorites. The relations between meteorites and asteroids that can be inferred from reflectance spectroscopy, and the porosity of meteorites are treated in Sections 4 and 5, respectively. The last section deals with meteorite ages, with emphasis on the cosmic ray exposure age.
Les météorites peuvent être considérées comme des échantillons d'objets proches de la Terre (‘NEOs’) et en tant que telles elles peuvent être utiles pour prévoir les propriétés de ceux-ci, notamment de ceux qui pourraient tomber sur Terre dans le futur. Cet article passe en revue les principales propriétés des météorites qui peuvent présenter un intérêt dans la recherche sur les NEOs. On rappelle d'abord les caractéristiques de la chute d'une météorite et les biais qu'elle introduit dans le passage de la population des météoroïdes proches de la Terre à la population des météorites. On décrit ensuite plus en détail la composition minéralogique et chimique des différentes classes de météorites. Les Sections 4 et 5 traitent respectivement des relations entre météorites et astéroïdes telles qu'on peut les déduire de la spectroscopie en réflectance, et de la porosité des météorites. Les ages des météorites, et plus particulièrement l'age d'exposition au rayonnement cosmique, sont abordés dans la dernière section.
Mot clés : NEO, Météorites, Spectroscopie en réflectance
Claude Perron 1; Brigitte Zanda 1
@article{CRPHYS_2005__6_3_345_0, author = {Claude Perron and Brigitte Zanda}, title = {Meteorites: samples of {NEOs} in the laboratory}, journal = {Comptes Rendus. Physique}, pages = {345--360}, publisher = {Elsevier}, volume = {6}, number = {3}, year = {2005}, doi = {10.1016/j.crhy.2005.01.005}, language = {en}, }
Claude Perron; Brigitte Zanda. Meteorites: samples of NEOs in the laboratory. Comptes Rendus. Physique, Volume 6 (2005) no. 3, pp. 345-360. doi : 10.1016/j.crhy.2005.01.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.01.005/
[1] Meteor news, J. Roy. Astron. Soc. Can., Volume 55 (1961), pp. 265-267
[2] The orbit and atmospheric trajectory of the Peekskill meteorite from video records, Nature, Volume 367 (1994), pp. 624-626
[3] J. Koblitz, MetBase 6.0, Meteorite data retrieval software, 2003, CD-ROM
[4] Expected characteristics of cometary meteorites, Meteorit. Planet. Sci., Volume 33 (1998), pp. 1201-1211
[5] The orbit of the Orgueil meteorite from historical records (abstract), Meteorit. Planet. Sci., Volume 39 (2004) no. Suppl., p. A45
[6] The 1908 Tunguska explosion – atmospheric disruption of a stony asteroid, Nature, Volume 361 (1993), pp. 40-44
[7] Explosions of small Spacewatch objects in the Earth's atmosphere, Nature, Volume 363 (1993), pp. 701-703
[8] The fragmentation of small asteroids in the atmosphere, Astron. J., Volume 105 (1993), pp. 1114-1144
[9] Disintegration of large meteoroids in Earth's atmosphere: theoretical models, Icarus, Volume 116 (1995), pp. 131-153
[10] Numerical modeling of Tunguska-like impacts, Planet. Space Sci., Volume 50 (2002), pp. 181-192
[11] Detection of meteoroid impacts by optical sensors in Earth orbit (T. Gehrels, ed.), Hazards Due to Comets and Asteroids, University of Arizona Press, Tucson, 1994, pp. 199-220
[12] Impact Cratering: A Geologic Process, Oxford University Press, New York, 1989
[13] The record of past impacts on Earth (T. Gehrels, ed.), Hazards due to Comets and Asteroids, University of Arizona Press, Tucson, 1994, pp. 417-462
[14] Earth Impact Database, 2003, http://www.unb.ca/passc/ImpactDatabase/ (accessed: 5 October 2004)
[15] Chicxulub Crater: a possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Geology, Volume 19 (1991), pp. 867-871
[16] Vredefort, Sudbury, Chicxulub: three of a Kind?, Annu. Rev. Earth Planet. Sci., Volume 28 (2000), pp. 305-338
[17] Abundances of the elements – meteoritic and solar, Geochim. Cosmochim. Acta, Volume 53 (1989), pp. 197-214
[18] Oxygen isotopes in meteorites, Annu. Rev. Earth Planet. Sci., Volume 21 (1993), pp. 115-149
[19] A chemical-petrologic classification for the chondritic meteorites, Geochim. Cosmochim. Acta, Volume 31 (1967), pp. 747-765
[20] Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses, Meteoritics, Volume 25 (1990), pp. 323-337
[21] Chondrules, Annu. Rev. Earth Planet. Sci., 25 (1997), p. 61
[22] Chondrules, Earth Planet. Sci. Lett., Volume 224 (2004), pp. 1-17
[23] The formation of chondrules: petrologic tests of the shock wave model, Science, Volume 280 (1998), pp. 62-67
[24] A model of the thermal processing of particles in solar nebula shocks: application to the cooling rates of chondrules, Meteorit. Planet. Sci., Volume 37 (2002), pp. 183-207
[25] Toward an astrophysical theory of chondrites, Science, Volume 271 (1996), pp. 1545-1552
[26] The origin of chondrules and refractory inclusions in chondritic meteorites, Astrophys. J., Volume 548 (2001), pp. 1029-1050
[27] Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets (J.F. Kerridge; M.S. Matthews, eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, 1988, pp. 819-857
[28] The solar system D/H ratio: observations and theories, Space Sci. Rev., Volume 92 (2000), pp. 201-224
[29] Millimeter and infrared observations of deuterated molecules, Planet. Space Sci., Volume 50 (2002), pp. 1267-1273
[30] Classification and properties of iron meteorites, Rev. Geophys. Space Phys., Volume 13 (1975), pp. 527-546
[31] Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid, Meteorit. Planet. Sci., Volume 36 (2001), pp. 869-891
[32] Evolutionary history of the mesosiderite asteroid – a chronologic and petrologic synthesis, Icarus, Volume 101 (1993), pp. 201-212
[33] Evidence for thermal metamorphism on the C, G, B, and F asteroids, Science, Volume 261 (1993), pp. 1016-1018
[34] Could G-class asteroids be the parent bodies of the CM chondrites?, Meteorit. Planet. Sci., Volume 33 (1998), pp. 253-258
[35] K asteroids and CO3/CV3 chondrites, Meteorit. Planet. Sci., Volume 36 (2001), pp. 245-253
[36] The Tagish Lake meteorite: a possible sample from a D-type asteroid, Science, Volume 293 (2001), pp. 2234-2236
[37] 10 Hygiea: ISO infrared observations, Icarus, Volume 156 (2002), pp. 202-210
[38] Asteroid Vesta: spectral reflectivity and compositional implications, Science, Volume 168 (1970), pp. 1445-1447
[39] Geochemical evolution of the eucrite parent body – possible nature and evolution of asteroid 4 Vesta (T. Gehrels, ed.), Asteroids, University of Arizona Press, 1979, pp. 765-782
[40] Chips off of asteroid – 4 Vesta – evidence for the parent body of basaltic achondrite meteorites, Science, Volume 260 (1993), pp. 186-191
[41] J.T. Wasson, C.R. Chapman, Space weathering of basalt-covered asteroids: Vesta an unlikely source of the HED meteorites (abstract), in: Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, 1996, LPI Tech. Report 96-02
[42] A. Jambon, Isotopic zoning in the inner Solar System, in: Oxygen in the Terrestrial Planets, Santa Fe, 2004
[43] Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results, Science, Volume 277 (1997), pp. 1492-1495
[44] Discovery of a main-belt asteroid resembling ordinary chondrite meteorites, Science, Volume 262 (1993), pp. 1541-1543
[45] Space weathering on airless bodies: resolving a mystery with lunar samples, Meteorit. Planet. Sci., Volume 35 (2000), pp. 1101-1107
[46] Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature, Volume 410 (2001), pp. 555-557
[47] S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo's fly-bys of Gaspra and Ida, Meteorit. Planet. Sci., Volume 31 (1996), pp. 699-725
[48] An age-colour relationship for main-belt S-complex asteroids, Nature, Volume 429 (2004), pp. 275-277
[49] Near-Earth asteroids: possible sources from reflectance spectroscopy, Science, Volume 229 (1985), pp. 160-163
[50] 1993 VW: an ordinary chondrite-like near-Earth asteroid, Astron. Astrophys., Volume 302 (1995), pp. 609-612
[51] Visible and near-infrared spectroscopic investigation of near-Earth objects at ESO: first results, Icarus, Volume 169 (2004), pp. 373-384
[52] Spectral properties of near-Earth asteroids: evidence for sources of ordinary chondrite meteorites, Science, Volume 273 (1996), pp. 946-948
[53] Spectral properties of Near-Earth Objects: Palomar and IRTF results for 48 objects including spacecraft targets (9969) Braille and (10302) 1989 ML, Icarus, Volume 151 (2001), pp. 139-149
[54] The composition of 433 Eros: a mineralogical-chemical synthesis, Meteorit. Planet. Sci., Volume 36 (2001), pp. 1661-1672
[55] Stony meteorite porosities and densities: a review of the data through 2001, Meteorit. Planet. Sci., Volume 38 (2003), pp. 1161-1180
[56] The density and porosity of meteorites from the Vatican collection, Meteorit. Planet. Sci., Volume 33 (1998), pp. 1231-1241
[57] The porosities of ordinary chondrites: models and interpretation, Meteorit. Planet. Sci., Volume 33 (1998), pp. 1221-1229
[58] Density and porosity of stone meteorites: implications for the density, porosity, cratering, and collisional disruption of asteroids, Icarus, Volume 142 (1999), pp. 97-105
[59] The petrophysical classification of meteorites, Stud. Geophys. Geod., Volume 37 (1993), pp. 65-82
[60] Asteroid density, porosity, and structure (W.F. Bottke; A. Cellino; P. Paolicchi; R.P. Binzel, eds.), Asteroids III, University of Arizona Press, Tucson, 2002, pp. 485-500
[61] Irradiation records in meteorites (J.F. Kerridge; M.S. Matthews, eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, 1988, pp. 205-245
[62] Cosmic-ray exposure history of ordinary chondrites, Annu. Rev. Earth Planet. Sci., Volume 20 (1992), pp. 221-243
[63] Cosmic-ray exposure ages of diogenites and the recent collisional history of the HED parent body/bodies, Meteorit. Planet. Sci., Volume 32 (1997), pp. 891-902
[64] Dynamical lifetimes of objects injected into asteroid belt resonances, Science, Volume 277 (1997), pp. 197-201
[65] Meteorite delivery via Yarkovsky orbital drift, Icarus, Volume 132 (1998), pp. 378-387
[66] Reviewing the Yarkovsky effect: new light on the delivery of stone and iron meteorites from the asteroid belt, Meteorit. Planet. Sci., Volume 34 (1999), pp. 161-167
[67] Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies, Nature, Volume 407 (2000), pp. 606-608
[68] A rain of ordinary chondritic meteorites in the early Ordovician, Earth Planet. Sci. Lett., Volume 194 (2001), pp. 1-2
[69] Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event, Science, Volume 300 (2003), pp. 961-964
[70] Fast delivery of meteorites to Earth after a major asteroid collision, Nature, Volume 430 (2004), pp. 323-325
[71] Meteoritic, asteroidal, and theoretical constraints on the 500 Ma disruption of the L chondrite parent body, Icarus, Volume 119 (1996), pp. 182-191
[72] Age of the solar system (J.F. Kerridge; M.S. Matthews, eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, 1988, pp. 259-275
[73] Lead isotopic ages of chondrules and calcium–aluminum-rich inclusions, Science, Volume 297 (2002), pp. 1678-1683
[74] Update on terrestrial ages of Antarctic meteorites, Earth Planet. Sci. Lett., Volume 93 (1989), pp. 299-313
[75] Lewis Cliff 86360, an Antarctic L-chondrite with a terrestrial age of 2.35 million years, Meteorit. Planet. Sci., Volume 32 (1997), pp. 775-780
[76] Catalogue of Meteorites, Cambridge University Press, Cambridge, 2000
[77] The differentiation of eucrites: the role of in situ crystallization, Meteorit. Planet. Sci., Volume 35 (2000), pp. 1087-1100
[78] Non-chondritic meteorites from asteroidal bodies (J.J. Papike, ed.), Planetary Materials, Mineralogical Society of America, Washington, 1998, pp. 1-195
[79] Distribution of the pre-solar component in Allende and other carbonaceous chondrites, Earth Planet. Sci. Lett., Volume 34 (1977), pp. 209-224
[80] Chemical and isotopic heterogeneity in protosolar matter, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), p. 2061
[81] Overview and classification of meteorites (J.F. Kerridge; M.S. Matthews, eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, 1988, pp. 3-31
Cited by Sources:
Comments - Policy