Condensation trails (contrails) are aircraft induced cirrus clouds, which may persist and grow to large cirrus cover in ice-supersaturated air, and may cause a warming of the atmosphere. This paper describes the formation, occurrence, properties and climatic effects of contrails. The global cover by lined-shaped contrails and the radiative impact of line-shaped contrails is smaller than that assessed in an international assessment in 1999. Contrails trigger contrail cirrus with far larger coverage than observed for line-shaped contrails, but still unknown radiative properties. Some model simulations indicate an impact of particles and particle precursors emitted from aircraft engines on cirrus clouds properties. However, the magnitude of this effect cannot yet be assessed. Contrail formation can be avoided only by flying in sufficiently warm and dry air. The formation of contrail cirrus can be reduced by avoiding flights in ice-supersaturated regions of the atmosphere, e.g., by raising the flight level into the lower-most stratosphere.
Les traînées de condensation sont des nuages de type cirrus génères par les avions qui peuvent persister et croître jusqu'à produire une couverture nuageuse importante si l'air est sursaturé en glace, et peuvent également conduire à un réchauffement de l'atmosphère. Cet article décrit les conditions d'apparition, la formation, les propriétés et les conséquences climatiques des traînées de condensation. La couverture nuageuse globale et l'impact radiatif des traînées rectilignes sont plus faibles que ce qui avait été évalué dans un rapport international en 1999. Les traînées de condensation déclenchent des cirrus qui ont une couverture beaucoup plus grande que celle observée pour les traînées rectilignes avec cependant des propriétés radiatives encore inconnues. Des simulations basées sur plusieurs modèles montrent l'existence d'un impact des particules et des précurseurs de particules émis par les moteurs d'avions sur les propriétés des cirrus générés par les traînées. Cependant, l'importance de cet impact ne peut pas encore être évaluée. La formation des traînées ne peut être évitée qu'en présence d'une atmosphère suffisamment chaude et humide. La formation des cirrus générés par les traînées peut être réduite uniquement en évitant de voler dans les régions de l'atmosphère sursaturées en glace, c'est-à-dire en augmentant l'altitude de vol jusqu'à atteindre les basses couches de la stratosphère.
Mots-clés : Émissions, Traînées de condensation, Cirrus, Particules, Climat, Réduction
Ulrich Schumann 1
@article{CRPHYS_2005__6_4-5_549_0, author = {Ulrich Schumann}, title = {Formation, properties and climatic effects of contrails}, journal = {Comptes Rendus. Physique}, pages = {549--565}, publisher = {Elsevier}, volume = {6}, number = {4-5}, year = {2005}, doi = {10.1016/j.crhy.2005.05.002}, language = {en}, }
Ulrich Schumann. Formation, properties and climatic effects of contrails. Comptes Rendus. Physique, Aircraft trailing vortices, Volume 6 (2005) no. 4-5, pp. 549-565. doi : 10.1016/j.crhy.2005.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.05.002/
[1] Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren, Schriften der Deutschen Akademie der Luftfahrtforschung, vol. 44, Verlag R. Oldenbourg, München/Berlin, 1941, pp. 1-15
[2] On the possibility of weather modification by aircraft contrails, Mon. Wea. Rev., Volume 98 (1970), pp. 745-748
[3] IPCC, Aviation and the Global Atmosphere. A Special Report of IPCC (Intergovernmental Panel on Climate Change) (J.E. Penner; D.H. Lister; D.J. Griggs; D.J. Dokken; M. McFarland, eds.), Cambridge Univ. Press, Cambridge, UK, 1999, pp. 65-120
[4] Aviation-produced aerosols and cloudiness (J.E. Penner; D.H. Lister; D.J. Griggs; D.J. Dokken; M. McFarland, eds.), Aviation and the Global Atmosphere, A Special Report of IPCC (Intergovernmental Panel on Climate Change), Cambridge Univ. Press, Cambridge, UK, 1999, pp. 65-120
[5] Aviation-produced aerosols and contrails, Surveys Geophys., Volume 20 (1999), pp. 113-167
[6] B. Kärcher, Contrails: Observations, formation mechanisms, atmospheric impacts, uncertainties, DLR-Mitt. 2000-01, DLR Oberpfaffenhofen, 2000
[7] D.S. Lee, P.E. Clare, J. Haywood, B. Kärcher, R.W. Lunnon, I. Pilling, A. Slingo, J.R. Tilston, Identifying the uncertainties in radiative forcing of climate from aviation contrails and aviation-induced cirrus, Report DERA/AS/PT/CR000102, DERA, Pyestock, UK, 2000
[8] Aviation impact on atmospheric composition and climate, European Research in the Stratosphere 1996–2000, EUR 19867, European Commission, Brussels, 2001, pp. 257-307 (Chapter 7)
[9] Contrail Cirrus (D.K. Lynch; K. Sassen; D.O'C. Starr; G. Stephens, eds.), Cirrus, Oxford Univ. Press, London, 2002, pp. 231-255
[10] The formation of exhaust contrails by jet aircraft, Bull. Amer. Meteor. Soc., Volume 34 (1953), pp. 14-20
[11] On conditions for contrail formation from aircraft exhausts, Meteor. Z., Volume 5 (1996), pp. 4-23
[12] Influence of propulsion efficiency on contrail formation, Aerosp. Sci. Tech., Volume 4 (2000), pp. 391-401
[13] Visible contrail formation from fuels with different sulfur contents, Geophys. Res. Lett., Volume 22 (1995), pp. 1357-1360
[14] Physicochemistry of aircraft-generated liquid aerosols, soot, and ice particles, 2, Comparison with observations and sensitivity studies, J. Geophys. Res., Volume 103 (1998), pp. 17129-17148
[15] Environmental conditions required for contrail formation and persistence, J. Geophys. Res., Volume 103 (1998), pp. 3929-3936
[16] Experimental test of the influence of propulsion efficiency on contrail formation, J. Aircraft, Volume 37 (2000), pp. 1083-1087
[17] Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1–7, J. Geophys. Res., Volume 107 (2002), p. AAC 2-1-AAC 2-27 | DOI
[18] Aircraft measurements of sub micrometer aerosol particles in the midlatitude free troposphere and tropopause region, Atmos. Res., Volume 44 (1997), pp. 333-356
[19] Aerosol states in the free troposphere at northern midlatitudes, J. Geophys. Res., Volume 107 (2002) no. D21, p. LAC 8-1-LAC 8-8 | DOI
[20] Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes, Geophys. Res. Lett., Volume 30 (2003) | DOI
[21] Ultrafine aerosol particles in aircraft plumes: In situ observations, Geophys. Res. Lett., Volume 25 (1998), pp. 2789-2792
[22] The initial composition of jet condensation trails, J. Atmos. Sci., Volume 53 (1996), pp. 3066-3083
[23] Properties of jet engine combustion particles during the PartEmis experiment: Microphysics and chemistry, Geophys. Res. Lett., Volume 30 (2003) (52-1–52-4) | DOI
[24] Aircraft engine soot as contrail nuclei, Geophys. Res. Lett., Volume 31 (2004), p. L11104 | DOI
[25] On the unification of aircraft ultrafine particle emission data, J. Geophys. Res., Volume 105 (2000), pp. 29379-29386
[26] Experimental investigations of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA, Atmos. Chem. Phys., Volume 2 (2003), pp. 211-223
[27] O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, U. Ebert, U. Schurath, Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles, J. Geophys. Res. (2005), in press
[28] The role of organic aerosols in homogeneous ice formation, Atmos. Chem. Phys., Volume 5 (2005), pp. 703-714
[29] Radiative forcing by contrails, Ann. Geophys., Volume 17 (1999), pp. 1080-1094
[30] On the transition of contrails into cirrus clouds, J. Atmos. Sci., Volume 57 (2000), pp. 464-480
[31] Dilution of aircraft exhaust plumes at cruise altitudes, Atmospheric Environment, Volume 32 (1998), pp. 3097-3103
[32] Clear-air seeding: Opportunities and strategies, J. Wea. Mod., Volume 16 (1984), pp. 46-60
[33] Notes on upper air hygrometry II: On the humidity in the stratosphere, Q. J. Roy. Meteor. Soc., Volume 71 (1945), pp. 110-112
[34] Formen und Bildung atmosphärischer Eiskristalle, Beitr. Physik der freien Atmosphäre, Volume 28 (1945), pp. 12-52
[35] Condensation trails, Weather, Volume 1 (1946), pp. 34-41
[36] Ice-supersaturation in the upper troposphere, GEWEX News, Volume 14 (2004) no. 1, pp. 6-7
[37] Clouds and Storms, The Pennsylvania State Univ. Press, University Park, PA, 1980
[38] Contrail-cirrus and their potential for regional climate change, Bull. Amer. Meteor. Soc., Volume 78 (1997), pp. 1885-1903
[39] Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, Nature, Volume 406 (2000), pp. 611-614
[40] Ice saturation at the tropopause observed from the ER-2 aircraft, Geophys. Res. Lett., Volume 17 (1990), pp. 353-356
[41] Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II, J. Atmos. Sci., Volume 52 (1995), pp. 4302-4326
[42] A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements, Ann. Geophys., Volume 17 (1999), pp. 1218-1226
[43] Comparison of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditions, J. Geophys. Res., Volume 105 (2000), pp. 3737-3744
[44] Pollution from aircraft emissions in the North Atlantic flight corridor: Overview on the POLINAT projects, J. Geophys. Res., Volume 105 (2000), pp. 3605-3631
[45] Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCA, Geophys. Res. Lett., Volume 29 (2002) no. 16 (60-1–60-4) | DOI
[46] Prevalence of ice supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation, J. Geophys. Res., Volume 106 (2001), pp. 17253-17266
[47] Ice supersaturation in the tropopause region over Lindenberg, Germany, Meteor. Z., Volume 12 (2003), pp. 143-156
[48] The global distribution of ice-supersaturated regions as seen by the microwave limb sounder, Q. J. Roy. Meteor. Soc., Volume 129 (2003), pp. 3391-3410
[49] Ice supersaturation as seen from TOVS, Atmos. Chem. Phys., Volume 4 (2004), pp. 539-547
[50] C.J. Stubenrauch, U. Schumann, Impact of air traffic on cirrus coverage, Geophys. Res. Lett. (2005), in press
[51] Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview, J. Geophys. Res., Volume 103 (1998), pp. 25631-25642
[52] A case study on the formation and evolution of ice supersaturation in the vicinity of a warm conveyor belt's outflow region, Atmos. Phys. Chem., Volume 5 (2005), pp. 973-987
[53] On the size distribution of ice-supersaturated regions in the upper troposphere and lowermost stratosphere, Ann. Geophys., Volume 18 (2000), pp. 499-504
[54] Mechanisms for midlatitude ozone loss: Heterogeneous chemistry in the lowermost stratosphere?, J. Geophys. Res., Volume 106 (2001), pp. 1297-1309
[55] On the composition and optical extinction of particles in the tropopause region, J. Geophys. Res., Volume 104 (1999), pp. 27441-27459
[56] Cirrus climatological results from LIDAR measurements at OHP (44°N, 6°E), Geophys. Res. Lett., Volume 28 (2001), pp. 1687-1690
[57] A diagnostic study of the global distribution of contrails: Part I: Present day climate, Theor. Appl. Climatol., Volume 61 (1998), pp. 127-141
[58] Operational detection of contrails from NOAA-AVHRR data, Int. J. Remote Sensing, Volume 20 (1999), pp. 1641-1660
[59] Advances in understanding clouds from ISCCP, Bull. Amer. Meteor. Soc., Volume 80 (1999), pp. 2261-2287
[60] Eight years of high cloud statistics using HIRS, J. Climate, Volume 12 (1999), pp. 170-184
[61] A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990), J. Geophys. Res., Volume 101 (1996), pp. 29407-29429
[62] Large eddy simulations of the vortex-pair breakup in aircraft wakes, AIAA Journal, Volume 34 (1996), pp. 2337-2345
[63] The turbulent decay of trailing vortex pairs in stably stratified environments, Aerosp. Sci. Techn., Volume 5 (2001), pp. 95-108
[64] Large-Eddy Simulation of Turbulence in the Free Atmosphere and behind Aircraft, Fluid Dynam. Res., Volume 20 (1997), pp. 1-10
[65] The effects of aircraft wake dynamics on contrail formation, J. Atmos. Sci., Volume 58 (2001), pp. 390-406
[66] A numerical study of the contrail-to-cirrus transition, Geophys. Res. Lett., Volume 25 (1998), pp. 4341-4344
[67] Contrail formation in aircraft wakes, J. Fluid Mech., Volume 502 (2004), pp. 361-373
[68] Differences in early contrail evolution of 2-engined versus 4-engined aircraft. Lidar measurements and numerical simulations, J. Geophys. Res., Volume 106 (2001), pp. 4899-4911
[69] Spreading and growth of contrails in a sheared environment, J. Geophys. Res., Volume 103 (1998), pp. 31557-31568
[70] Estimate of diffusion parameters of aircraft exhaust plumes near the tropopause from nitric oxide and turbulence measurements, J. Geophys. Res., Volume 100 (1995), pp. 14147-14162
[71] Dispersion of aircraft exhausts in the free atmosphere, J. Geophys. Res., Volume 101 (1996), pp. 26007-26015
[72] Transport and effective diffusion of aircraft emissions, J. Geophys. Res., Volume 103 (1998), pp. 25905-25913
[73] Contrail observations by ground-based scanning lidar: Cross-sectional growth, Geophys. Res. Lett., Volume 22 (1995), pp. 3501-3504
[74] V. Freudenthaler, Lidarmessungen der räumlichen Ausbreitung sowie mikrophysikalischer und optischer Parameter von Flugzeugkondensstreifen. Schriftenreihe des Fraunhofer Institut Atmosphärische Umweltforschung, Garmisch, Band 63-2000, 2000
[75] Vertical dispersion of an aircraft wake: Aerosol-lidar analysis of entrainment and detrainment in the vortex regime, J. Geophys. Res., Volume 104 (1999), pp. 2117-2129
[76] Lidar and numerical studies on the different evolution of vortex pair and secondary wake in young contrails, J. Geophys. Res., Volume 104 (1999), pp. 2131-2142
[77] Determination of contrails from satellite data and observational results, Proc. of a DLR Intern. Coll., Bonn, Nov. 15/16, 1990, Lecture Notes in Engrg., vol. 60, Springer-Verlag, Berlin, 1990, pp. 138-153
[78] Transformation of contrails into cirrus during SUCCESS, Geophys. Res. Lett., Volume 25 (1998), pp. 1157-1160
[79] Aircraft condensation trails and cirrus, Weather, Volume 59 (2004), pp. 116-121
[80] Contrail frequency over Europe from NOAA-satellite images, Ann. Geophys., Volume 12 (1994), pp. 962-968
[81] Regional radiative forcing by line-shaped contrails derived from satellite data, J. Geophys. Res., Volume 107 (2002), p. 4104 | DOI
[82] P. Minnis, R. Palikonda, B.J. Walter, J.K. Ayers, H. Mannstein, Contrail coverage over the North Pacific from AVHRR data, Meteor. Z. (2005), in press
[83] R. Palikonda, P. Minnis, D.P. Duda, H. Mannstein, Contrail coverage derived from 2001 AVHRR data over the continental United States of America and surrounding areas, Meteor. Z. (2005), in press
[84] R. Meyer, H. Mannstein, R. Meerkötter, P. Wendling, Contrail and cirrus observations over Europe from 6 years of NOAA-AVHRR data, in: Proc. of the 2002 EUMETSAT Meteorological Satellite Conference, Dublin, Ireland, 2002 September 2–6, 2002, pp. 728–735
[85] R. Meyer, R. Buell, C. Leiter, H. Mannstein, S. Marquart, T. Oki, P. Wendling, Contrail observations over Southern and Eastern Asia in NOAA/AVHRR data and comparisons to contrail simulations in a GCM, Int. J. Remote Sensing (2005), in press
[86] A diagnostic study of the global coverage by contrails. Part II: Future air traffic scenarios, Theor. Appl. Climatol., Volume 63 (1999), pp. 1-9
[87] Future development of contrail cover, optical depth, and radiative forcing: impacts of increasing air traffic and climate change, J. Clim., Volume 16 (2003), pp. 2890-2904
[88] D.P. Duda, P. Minnis, D.P. Garber, R. Palikonda, CONUS contrail frequency and coverage estimated from RUC and flight track data, Meteor. Z. (2005), in press
[89] In situ observations of a reduction in effective crystal diameter in cirrus clouds near a flight corridor, Geophys. Res. Lett., Volume 27 (2000), pp. 681-684
[90] A possible change in cloud radiative forcing due to aircraft exhaust, Geophys. Res. Lett., Volume 25 (1998), pp. 1673-1676
[91] In situ measurements of enhanced crystal number densities in cirrus clouds caused by aircraft exhaust, J. Geophys. Res., Volume 103 (1998), pp. 11355-11361
[92] A parameterization of cirrus cloud formation: Homogeneous freezing including effects of aerosol size, J. Geophys. Res., Volume 107 (2002), p. 4698 | DOI
[93] Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experiment, Atmos. Chem. Phys., Volume 3 (2003), pp. 1807-1816
[94] The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., Volume 3 (2003), pp. 823-838
[95] Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment, J. Geophys. Res., Volume 109 (2004), p. D20206 | DOI
[96] Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCM, J. Geophys. Res., Volume 109 (2004), p. D16204 | DOI
[97] Simulating the global atmospheric black carbon cycle: a revisit to the contribution of aircraft emissions, Atmos. Chem. Phys., Volume 4 (2004), pp. 2521-2541
[98] The potential impact of soot particles from aircraft exhaust on cirrus clouds, Geophys. Res. Lett., Volume 24 (1997), pp. 249-252
[99] Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity, Atmos. Chem. Phys., Volume 3 (2003), pp. 1781-1806
[100] The impact of aerosols and gravity waves on cirrus clouds at midlatitudes, J. Geophys. Res., Volume 109 (2004), p. D12202 | DOI
[101] Influence of air traffic on cirrus occurrence, Nature, Volume 397 (1999), pp. 30-31
[102] Contrails, cirrus trends, and climate, J. Clim., Volume 17 (2004), pp. 1671-1685
[103] Evidence of impact of aviation on cirrus cloud formation, Atmos. Chem. Phys., Volume 3 (2003), pp. 1633-1644
[104] Is there a trend in cirrus cloud cover due to aircraft traffic?, Atmos. Chem. Phys. Discuss., Volume 4 (2004), pp. 6473-6501
[105] H. Mannstein, U. Schumann, Aircraft induced contrail cirrus over Europe, Meteor. Z. (2005), in press
[106] Optical parameters of contrails from lidar measurements: Linear depolarization, Geophys. Res. Lett., Volume 23 (1996), pp. 3715-3718
[107] Remote sensing of optical depth of aerosols and cloud cover related to air traffic, Atmos. Environ., Volume 32 (1998), pp. 3123-3127
[108] Global distribution of contrail radiative forcing, Geophys. Res. Lett., Volume 26 (1999), pp. 1853-1856
[109] Contrails in a comprehensive climate model: parameterisation and radiative forcing results, J. Geophys. Res., Volume 107 (2002), p. 4164 | DOI
[110] On the regional climatic impact of contrails: Microphysical and radiative properties of contrails and natural cirrus clouds, Ann. Geophys., Volume 15 (1997), pp. 1457-1467
[111] Greenhouse effects of aircraft emissions as calculated by a radiative transfer model, Ann. Geophys., Volume 13 (1995), pp. 413-418
[112] Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing, Atmosph. Res., Volume 52 (1999), pp. 59-75
[113] On the tradeoff of the solar and the thermal infrared radiative impact of contrails, Geophys. Res. Lett., Volume 28 (2001), pp. 3119-3122
[114] Towards a reliable GCM estimation of contrail forcing, Geophys. Res. Lett., Volume 29 (2002), p. 1179 | DOI
[115] S. Marquart, M. Ponater, F. Mager, R. Sausen, Future development of contrails: Impacts of increasing air traffic and climate change, in: Proc. AAC-Conference, June 30 – July 3, 2003, Friedrichshafen, Germany, EUR 21051, 2004, pp. 255–260
[116] Modeled impact of cirrus cloud increases along aircraft flight paths, J. Geophys. Res., Volume 105 (2000), pp. 19927-19940
[117] M. Ponater, S. Marquart, R. Sausen, U. Schumann, On contrail climate sensitivity, Geophys. Res. Lett. (2005) 32, L10706, 10.1029/2005GL022580
[118] K.P. Shine, Comments on Contrails, cirrus trends, and climate, J. Clim. 68 (2005), in press
[119] Jet aircraft contrails: Surface temperature variations during the aircraft groundings of September 11–13, 2001, 10th Conference on Aviation, Range & Aerospace Meteorology, 13–16 May 2002, Portland, Oregon, American Meteorological Society, 2002 (paper J1.1)
[120] Contrails reduce daily temperature range, brief communications, Nature, Volume 418 (2002), p. 601
[121] Regional variations in U.S. diurnal temperature range for the 11–14 September 2001 aircraft groundings: Evidence of jet contrail influence on climate, J. Clim., Volume 17 (2004), pp. 1123-1134
[122] Impact of unusually clear weather on United States daily temperature range following 9/11/2001, Climate Res., Volume 26 (2004), pp. 1-4
[123] S. Marquart, M. Ponater, L. Ström, K. Gierens, An upgrade estimate of the radiative forcing by cryoplane contrails, Meteor. Z. (2005), in press
[124] First simulations of cryoplane contrails, J. Geophys. Res., Volume 107 (2002), p. 4346 | DOI
[125] Reduced environmental impact by lowered cruise altitude for liquid-hydrogen fuelled aircraft, Aerosp. Sci. Technol., Volume 8 (2004), pp. 307-320
[126] Estimate of the climate impact of cryoplanes, Aerosp. Sci. Technol., Volume 5 (2001), pp. 73-84
[127] Reducing the climate change impacts of aviation by restricting cruise altitudes, Transportation Res. Part D, Volume 7 (2002), pp. 451-464
[128] Air transport cruise altitude restrictions to minimize contrail formation, Climate Policy, Volume 3 (2003), pp. 207-219 S1469-3062(03)00054-8
[129] C. Fichter, S. Marquart, R. Sausen, D.S. Lee, The impact of cruise altitude on contrails and related radiative forcing, Meteor. Z. (2005), in press
[130] Impact of Aircraft NOx Emissions. Part 1: Interactively coupled climate-chemistry simulations and sensitivities to climate-chemistry feedback, lightning and model resolution, Meteor. Z., Volume 11 (2002), pp. 177-186
[131] M.J. Garrison, D.P. DuBois, S.L. Baughcum, The Effect of Constrained Cruise Altitudes on Fuel Usage, NOx Production, and Flight Time for Commercial Airplanes, NASA/CR, 213305, 2004
[132] H. Mannstein, P. Spichtinger, K. Gierens, How to avoid contrail cirrus, Transportation Research Part D, Transport and Environment (2005), in press
[133] Chemical ozone loss in the tropopause region on subvisible ice clouds, calculated with a chemistry-transport model, J. Geophys. Res., Volume 107 (2002), p. 4032 (ACH 5-1 – 5-15) | DOI
[134] Microphysics and heterogeneous chemistry in aircraft plumes—high sensitivity on local meteorology and atmospheric composition, Atmos. Chem. Phys., Volume 5 (2005), pp. 533-545
[135] Identification of extratropical two-way troposphere-stratosphere mixing based on CARIBIC measurements of O3, CO and ultrafine particles, J. Geophys. Res., Volume 105 (2000), pp. 1527-1535
Cited by Sources:
Comments - Policy