Comptes Rendus
Experimental investigations on wake vortices and their alleviation
[Recherches sur les tourbillons de sillage et leur contrôle]
Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 415-429.

Les recherches actuelles en laboratoire sur les tourbillons de sillage s'appuient largement sur les avancées récentes dans le domaine de l'analyse théorique des écoulements tourbillonnaires (stabilité) et sur les progrès réalisés dans le domaine de la simulation numérique. La traction de maquettes dans un bassin hydrodynamique, associée à des mesures PIV (Particle Image Velocimetry), constitue probablement la méthode expérimentale la plus efficace pour ce type d'études. Des méthodes de contrôle passif et actif visant à réduire l'intensité des tourbillons ont été testées avec succès dans ce type d'installation. Le contrôle passif exploite le caractère intrinsèquement instable de configurations de tourbillons engendrées par des plans de voilure particuliers. Le contrôle actif consiste à forcer les modes d'instabilités dominants. Ces méthodes sont efficaces, mais leur mise en pratique soulève un certain nombre de problèmes qui sont discutés ici et qui ne relèvent pas que de la mécanique des fluides.

Recent wake vortex research in the laboratory has benefited considerably from concurrent analytical and numerical research on the instability of vortex systems. Tow tank, with dye flow visualization and particle image velocimetry is the most effective combination for laboratory research. Passive and active wake alleviation schemes have been successfully demonstrated in the laboratory. The passive alleviation systems exploit the natural evolution of vortex instabilities while the active systems rely on hastening selected instabilities by forcing the vortices individually or as a system. Their practical applicability, however, will have to meet further criteria beyond those dictated by fluid dynamics.

Publié le :
DOI : 10.1016/j.crhy.2005.05.004
Keywords: Wake vortex, Alleviation, Passive alleviation, Active alleviation, Vortex experiments
Mot clés : Tourbillon de sillage, Contrôle, Contrôle passif, Contrôle actif, Recherches sur les tourbillons de sillage
Ömer Savaş 1

1 Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740, USA
@article{CRPHYS_2005__6_4-5_415_0,
     author = {\"Omer Sava\c{s}},
     title = {Experimental investigations on wake vortices and their alleviation},
     journal = {Comptes Rendus. Physique},
     pages = {415--429},
     publisher = {Elsevier},
     volume = {6},
     number = {4-5},
     year = {2005},
     doi = {10.1016/j.crhy.2005.05.004},
     language = {en},
}
TY  - JOUR
AU  - Ömer Savaş
TI  - Experimental investigations on wake vortices and their alleviation
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 415
EP  - 429
VL  - 6
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.05.004
LA  - en
ID  - CRPHYS_2005__6_4-5_415_0
ER  - 
%0 Journal Article
%A Ömer Savaş
%T Experimental investigations on wake vortices and their alleviation
%J Comptes Rendus. Physique
%D 2005
%P 415-429
%V 6
%N 4-5
%I Elsevier
%R 10.1016/j.crhy.2005.05.004
%G en
%F CRPHYS_2005__6_4-5_415_0
Ömer Savaş. Experimental investigations on wake vortices and their alleviation. Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 415-429. doi : 10.1016/j.crhy.2005.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.05.004/

[1] F.W. Caldwell, E.N. Fales, NACA Report 83, 1921

[2] N.A.V. Piercy J. Roy. Aero. Soc., 27 (1923), pp. 488-500

[3] A. Fage; L.F.G. Simmons Phil. Trans. Roy. Soc. London Ser. A, 225 (1926) no. 7, pp. 303-330

[4] F.W. Lanchester Aerodynamics, Van Nostrand, New York, 1908

[5] Aircraft Wake Turbulence and its Detection (J.H. Olsen; A. Goldburg; M. Rogers, eds.), Plenum, New York, 1971

[6] C.D. Donaldson, A.J. Bilanin, in: R.H. Korkegi (Ed.), AGARDograph 204, 1975

[7] A. Gessow (Ed.), Wake Vortex Minimization, NASA SP-409, 1976

[8] NATO-AGARD CP-584, 1996

[9] P.R. Spalart Ann. Rev. Fluid Mech., 30 (1998), pp. 107-138

[10] V.J. Rossow Prog. Aero. Sci., 35 (1999) no. 6, pp. 507-660

[11] T. Gerz; F. Holzäpfel; D. Darracq Prog. Aero. Sci., 38 (2002) no. 3, pp. 181-208

[12] E. Coustols, E. Stumpf, L. Jacquin, F. Moens, H. Vollmers, T. Gerz, AIAA Paper No. 2003-0938, 2003

[13] , 2005 http://wwwe.onecert.fr/projets/WakeNet2-Europe

[14] , 2005 http://www.volpe.dot.gov/wv/wv-bib.html J.N. Hallock (Ed.), Wake vortex bibliography

[15] , 2005 http://www.boeing.com

[16] R.L. Bristol; J.M. Ortega; P.S. Marcus; Ö. Savaş J. Fluid Mech., 517 (2004), pp. 331-358

[17] S.C. Crow AIAA J., 8 (1970) no. 12, pp. 2172-2179

[18] D.L. Ciffone, C. Lonzo Jr., NASA TM X-62,459, 1975

[19] A.D. Durston, W.S. Walker, D.M. Driver, S.C. Smith, Ö. Savaş, J. Aircraft 42 (3) (2005), in press

[20] J.M. Ortega; R.L. Bristol; Ö. Savaş AIAA J., 40 (2002) no. 4, pp. 709-721

[21] J.M. Ortega; R.L. Bristol; Ö. Savaş J. Fluid Mech., 474 (2003), pp. 35-84

[22] R.L. Bristol; J.M. Ortega; Ö. Savaş AIAA J., 41 (2003) no. 4, pp. 741-744

[23] S.C. Crow Aircraft Wake Turbulence and its Detection (J.H. Olsen; A. Goldburg; M. Rogers, eds.), Plenum, New York, 1971, pp. 577-583

[24] A.J. Bilanin, S.E. Widnall, AIAA Paper No. 73-107, 1973

[25] R.E. Dunham, in: A. Gessow (Ed.), NASA Symposium on Wake Vortex Minimization, NASA SP-409, 1976, pp. 221–249

[26] V.R. Corsiglia; R.A. Jacobsen; N.A. Chigier Aircraft Wake Turbulence and Its Detection (J.H. Olsen; A. Goldburg; M. Rogers, eds.), Plenum, New York, 1971, pp. 229-242

[27] G.R. Baker; S.J. Barker; K.K. Bofah; P.G. Saffman J. Fluid Mech., 65 (1974), pp. 325-336

[28] P.R. Bandyopadhyay; D.J. Stead; R.L. Ash AIAA J., 29 (1991) no. 10, pp. 1627-1633

[29] A.J. Bilanin, C.D. Donaldson, R.S. Snedeker, AFFDL-TR-74-90, 1974

[30] S.A. Brandt; J.D. Iversen J. Aircraft, 14 (1977) no. 12, pp. 1212-1220

[31] C. Cerretelli; C.H.K. Williamson J. Fluid Mech., 475 (2003), pp. 41-77

[32] C. Cerretelli; C.H.K. Williamson J. Fluid Mech., 493 (2003), pp. 219-229

[33] A.L. Chen; J.D. Jacob; Ö. Savaş J. Fluid Mech., 382 (1999), pp. 155-193

[34] D.L. Ciffone; K.L. Orloff AIAA J., 12 (1974) no. 8, pp. 1154-1155

[35] V.R. Corsiglia; R.G. Schwind; N.A. Chigier J. Aircraft, 10 (1973) no. 12, pp. 752-757

[36] P. Coton, in: Characterization and Modification of Wakes from Lift: Vehicles in Fluids, AGARD, CP-584, 1996, pp. 29:1–12

[37] D.R. Croom, in: A. Gessow (Ed.), NASA Symposium on Wake Vortex Minimization, NASA SP-409, 1976, pp. 239–368

[38] J.D. Crouch; G.D. Miller; P.R. Spalart AIAA J., 39 (2001) no. 12, pp. 2374-2381

[39] M.J. Czech, G.D. Miller, J.D. Crouch, M. Strelets, AIAA Paper No. 2004-2149, 2004

[40] A.C. de Bruin, S.H. Hegen, P.B. Rohne, P.R. Spalart, in: Characterization and Modification of Wakes from Lift: Vehicles in Fluids, AGARD, CP-584, 1996, pp. 25:1–12

[41] W.J. Devenport; M.C. Rife; S.I. Liapis; G.J. Follin J. Fluid Mech., 312 (1996), pp. 67-106

[42] W.J. Devenport; J.S. Zsoldos; C.M. Vogel J. Fluid Mech., 332 (1997), pp. 71-104

[43] W.J. Devenport; C.M. Vogel; J.S. Zsoldos J. Fluid Mech., 394 (1999), pp. 357-377

[44] W.R. Graham Aeronautical J. (2002), pp. 403-426

[45] W.R. Graham; S.W. Park; T.B. Nickels AIAA J., 41 (2003) no. 9, pp. 1835-1838

[46] W.R. Graham, L. David, T. Bertenyi, Aeronautical J. (2005), in press

[47] S. Haverkamp; G. Neuwerth; D. Jacob Aerospace Sci. Tech., 7 (2003) no. 5, pp. 331-339

[48] A.L. Heyes; D.A.R. Smith Exp. Fluids, 37 (2004), pp. 120-127

[49] J.D. Jacob, D. Liepmann, Ö. Savaş, in: Characterization and Modification of Wakes from Lift: Vehicles in Fluids, AGARD, CP-584, 1996, pp. 27:1–12

[50] J.D. Jacob, Ö. Savaş, D. Liepmann, AIAA Paper No. 96-2497, 1996

[51] J.D. Jacob; Ö. Savaş; D. Liepmann AIAA J., 35 (1997) no. 2, pp. 275-280

[52] L. Jacquin, D. Fabre, P. Geffroy, E. Coustols, AIAA Paper No. 2001-1038, 2001

[53] L. Jacquin; D. Fabre; D. Sipp; V. Theofilis; H. Vollmers Aerospace Sci. Tech., 7 (2003), pp. 577-593

[54] F. Laporte; T. Leweke AIAA J., 40 (2002) no. 12, pp. 2483-2494

[55] T. Leweke; C.H.K. Williamson J. Fluid Mech., 360 (1998), pp. 85-119

[56] D.K. Lezius AIAA J., 12 (1974) no. 8, pp. 1065-1071

[57] X. Li, J.D. Jacob, AIAA Paper No. 2000-2219, 2000

[58] P. Meunier; T. Leweke Phys. Fluids, 13 (2001) no. 10, pp. 2747-2750

[59] P. Meunier; U. Ehrensteina; T. Leweke; M. Rossi Phys. Fluids, 14 (2002) no. 8, pp. 2757-2766

[60] J.H. Olsen Aircraft Wake Turbulence and its Detection (J.H. Olsen; A. Goldburg; M. Rogers, eds.), Plenum, New York, 1971, pp. 455-472

[61] J.M. Ortega; Ö. Savaş AIAA J., 39 (2001) no. 4, pp. 750-754

[62] E. Özger; I. Schell; D. Jacob J. Aircraft, 38 (2001) no. 5, pp. 878-887

[63] T.R. Quackenbush; A.J. Bilanin; B.F. Carpenter (J.H. Jacobs, ed.), Proceedings of the SPIE, vol. 3674, The International Society for Optical Engineering, 1999, pp. 84-94

[64] J.C. Patterson J. Aircraft, 12 (1975) no. 9, pp. 745-749

[65] J.C. Patterson, E.C.F.L. Jordan, in: A. Gessow (Ed.), NASA Symposium on Wake Vortex Minimization, NASA SP-409, 1976, pp. 251–270

[66] J.C. Patterson, E.C. Hastings, F.L. Jordan, in: A. Gessow (Ed.), NASA Symposium on Wake Vortex Minimization, NASA SP-409, 1976, pp. 271–303

[67] V.J. Rossow; J.N. Sacco; P.A. Askins; L.S. Bisbee; S.M. Smith J. Aircraft, 32 (1995) no. 2, pp. 278-284

[68] T. Sarpkaya AIAA J., 36 (1998) no. 9, pp. 1671-1679

[69] I. Schell; E. Özger; D. Jacob Aerospace Sci. Tech., 4 (2000) no. 2, pp. 79-90

[70] J.R. Spreiter; A.H. Sacks J. Aero. Sci., 18 (1951) no. 1, pp. 21-32 (72)

[71] D.H. Thompson J. Aircraft, 12 (1975) no. 11, pp. 910-911

[72] H. Vollmers, R. Stuff, K.A. Buetefisch, H. Mattner, A. Quast, K.H. Horstmann, G. Calcagno, DLR report (2001) IB-223-2001 A 05, DLR, Göttingen

[73] F. Bao, H. Vollmers, H. Mattner, Institute of Aerodynamics and Flow Technology, DLR, Göttingen

[74] E.V. Laitone AIAA J., 34 (1996) no. 9, pp. 1941-1942

[75] L. Prandtl; O.J. Tietjens Applied Hydo- and Aeromechanics, Dover, New York, 1934

[76] D.P. Delisi; G.C. Greene J. Aircraft, 27 (1990) no. 11, pp. 968-971

[77] M.J. Sholl, Ö. Savaş, AIAA Paper 97-0493, 1997

[78] V.J. Rossow, in: A. Gessow (Ed.) NASA Symposium on Wake Vortex Minimization, NASA SP-409, 1976, pp. 4–54

[79] P.G. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge, 1992

[80] J.D. Crouch J. Fluid Mech., 350 (1997), pp. 311-330

[81] S.C. Rennich; S.K. Lele J. Aircraft, 36 (1999) no. 2, pp. 398-404

[82] D. Fabre; L. Jacquin; A. Loof J. Fluid Mech., 451 (2002), pp. 319-328

[83] R. Fjørtoft Geofysiske Publikasjoner, 17 (1950) no. 6, pp. 2-52

[84] H. Ludwieg Z. Flugwiss., 8 (1960) no. 5, pp. 135-140

[85] R. Stuff, AIAA Paper 2001-2429, 2001

[86] R. Stuff, AIAA Paper 2003-1108, 2003

[87] T.R. Quackenbush; A.J. Bilanin; P.F. Batcho; R.M. McKillip; B.F. Carpenter (J.M. Sater, ed.), Proceedings of the SPIE, vol. 3044, The International Society for Optical Engineering, 1997, pp. 134-146

[88] T.R. Quackenbush; P.F. Batcho; A.J. Bilanin; B.F. Carpenter (J.M. Sater, ed.), Proceedings of the SPIE, vol. 3326, The International Society for Optical Engineering, 1998, pp. 1259-1271

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Airplane trailing vortices and their control

Jeffrey Crouch

C. R. Phys (2005)


Predicting the near-field evolution of airplane trailing vortices

Michael Czech; Gregory Miller; Jeffrey Crouch; ...

C. R. Phys (2005)


Unsteadiness, instability and turbulence in trailing vortices

Laurent Jacquin; David Fabre; Denis Sipp; ...

C. R. Phys (2005)