The near-field (up to about 20 spans) development of trailing vortices is investigated experimentally and numerically. Computational Fluid Dynamics (CFD) results are based on the solution of quasi-3D Reynolds-averaged Navier–Stokes equations with a one-equation turbulence model. The inclusion of turbulence effects is found to be essential to capturing the correct near-field development. The CFD results are shown to be in very good agreement with experimental wake-survey results out to ten spans. Results show that wing loadings typical of commercial airplanes in a landing configuration can lead to multiple, or single vortex pairs, at distances of fifteen to twenty spans downstream.
Le développement d'un sillage tourbillonnaire dans le champ proche d'un avion ( jusqu'à 20 envergures) est étudié expérimentalement et numériquement. L'approche numérique est basée sur la résolution des équations de Navier–Stokes moyennées au sens de Reynolds, auxquelles on adjoint un modèle de turbulence à une équation de transport. On montre ainsi que les effets de turbulence jouent un rôle primordial sur la dynamique du sillage dans le champ proche. Les résultats numériques sont en très bon accord avec les résultats expérimentaux, jusqu'à environ 10 envergures. Les résultats montrent que les lois de charge typiques d'un avion commercial en configuration d'atterrissage peuvent aboutir, à des distances de quinze à vingt envergures, à des configurations tourbillonnaires très diverses, comportant un seul ou plusieurs dipôles.
Mot clés : CFD, RANS, Turbulence, Tourbillons, Fusion de tourbillons, Mesures
Michael Czech 1; Gregory Miller 1; Jeffrey Crouch 1; Michail Strelets 2
@article{CRPHYS_2005__6_4-5_451_0, author = {Michael Czech and Gregory Miller and Jeffrey Crouch and Michail Strelets}, title = {Predicting the near-field evolution of airplane trailing vortices}, journal = {Comptes Rendus. Physique}, pages = {451--466}, publisher = {Elsevier}, volume = {6}, number = {4-5}, year = {2005}, doi = {10.1016/j.crhy.2005.05.005}, language = {en}, }
TY - JOUR AU - Michael Czech AU - Gregory Miller AU - Jeffrey Crouch AU - Michail Strelets TI - Predicting the near-field evolution of airplane trailing vortices JO - Comptes Rendus. Physique PY - 2005 SP - 451 EP - 466 VL - 6 IS - 4-5 PB - Elsevier DO - 10.1016/j.crhy.2005.05.005 LA - en ID - CRPHYS_2005__6_4-5_451_0 ER -
Michael Czech; Gregory Miller; Jeffrey Crouch; Michail Strelets. Predicting the near-field evolution of airplane trailing vortices. Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, pp. 451-466. doi : 10.1016/j.crhy.2005.05.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.05.005/
[1] T. Quackenbush, A. Bilanin, P. Batcho, R. McKilipp, B. Carpenter, Implementation of vortex wake control using SMA-actuated devices, in: Proc. SPIE, vol. 3044, 1997, pp. 134–146
[2] A method for accelerating the destruction of aircraft wake vortices, J. Aircraft, Volume 36 (1999), pp. 398-404
[3] Stability of a four-vortex aircraft wake model, Phys. Fluids, Volume 12 (2000), pp. 2438-2443
[4] Rapidly growing instability mode in trailing multiple-vortex wakes, AIAA J., Volume 39 (2001), pp. 750-754
[5] Active-control system for breakup of airplane trailing vortices, AIAA J., Volume 39 (2001), pp. 2374-2381
[6] Formation and structure of vortex systems generated by unflapped and flapped wing configurations, Z. Flugwiss. Weltraumforsch, Volume 19 (1995), pp. 366-379
[7] A.C. de Bruin, S.H. Hegen, P.B. Rohne, P.R. Spalart, Flow field survey in the trailing vortex system behind a civil aircraft model at high lift, AGARD-CP-584, 1996, pp. 25-1–25-12
[8] L. Jacquin, D. Fabre, P. Geffroy, E. Coustols, The properties of a transport aircraft wake in the extended near-field: an experimental study, AIAA Paper No. 2001-1038, 2001
[9] C. Bellastrada, C. Breitsamter, B. Laschka, Investigation of turbulent wake vortex originating from a large transport aircraft in landing configuration, in: Proc. CEAS Aerospace Aerodynamics Research Conference, 2002, pp. 31.1–31.10
[10] J.D. Jacob, Ö. Savaş, Vortex dynamics in trailing wakes of flapped rectangular wings, AIAA Paper No. 97-0048, 1997
[11] R. Stuff, The near-far field relationship of vortices shed from transport aircraft, AIAA Paper No. 2001-2429, 2001
[12] D.A. Durston, S.M. Walker, D.M. Driver, S.C. Smith, Ö. Savaş, Wake vortex alleviation flow field studies, AIAA Paper No. 2004-1073, 2004
[13] E. Coustols, E. Stumpf, L. Jacquin, F. Moens, H. Vollmers, T. Gerz, Minimized wake: a collaborative research programme on aircraft wake vortices, AIAA Paper No. 2003-0938, 2003
[14] A. Benkenida, G. Jonville, D. Darracq, Numerical study of wake vortices of generic aircraft model, AIAA Paper No. 2001-2428, 2001
[15] E. Stumpf, Numerical study of four-vortex aircraft wakes and layout of corresponding high-lift configurations, AIAA Paper No. 2004-1067, 2004
[16] M. Shur, M. Strelets, A. Travin, P. Spalart, Two numerical studies of trailing vortices, AIAA Paper No. 98-0595, 1998
[17] P. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper No. 92-0439, 1992
[18] M.L. Shur, P. Spalart, On the sensitization of turbulence models to rotation and curvature, Aerospace Sci. Technol., 1997
[19] J.P. Crowder, R.L. Watzlavick, T.K. Krutckoff, Airplane flow-field measurements, in: AIAA/SAE World Aviation Congress, vol. 8 (975535), 1997, pp. 1–9
[20] S.E. Rogers, D. Kwak, An upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations, AIAA Paper No. 88-2583-CP, 1988
[21] The Structure of Turbulent Shear Flow, Cambridge University Press, New York, 1976
[22] Simplified modeling for flaps-down airplane trailing vortices, Bull. Am. Phys. Soc., Volume 46 (2001), p. 159
Cited by Sources:
Comments - Policy