[Prédiction de l'évolution des tourbillons de sillage d'avions dans le champ proche]
Le développement d'un sillage tourbillonnaire dans le champ proche d'un avion ( jusqu'à 20 envergures) est étudié expérimentalement et numériquement. L'approche numérique est basée sur la résolution des équations de Navier–Stokes moyennées au sens de Reynolds, auxquelles on adjoint un modèle de turbulence à une équation de transport. On montre ainsi que les effets de turbulence jouent un rôle primordial sur la dynamique du sillage dans le champ proche. Les résultats numériques sont en très bon accord avec les résultats expérimentaux, jusqu'à environ 10 envergures. Les résultats montrent que les lois de charge typiques d'un avion commercial en configuration d'atterrissage peuvent aboutir, à des distances de quinze à vingt envergures, à des configurations tourbillonnaires très diverses, comportant un seul ou plusieurs dipôles.
The near-field (up to about 20 spans) development of trailing vortices is investigated experimentally and numerically. Computational Fluid Dynamics (CFD) results are based on the solution of quasi-3D Reynolds-averaged Navier–Stokes equations with a one-equation turbulence model. The inclusion of turbulence effects is found to be essential to capturing the correct near-field development. The CFD results are shown to be in very good agreement with experimental wake-survey results out to ten spans. Results show that wing loadings typical of commercial airplanes in a landing configuration can lead to multiple, or single vortex pairs, at distances of fifteen to twenty spans downstream.
Mots-clés : CFD, RANS, Turbulence, Tourbillons, Fusion de tourbillons, Mesures
Michael Czech 1 ; Gregory Miller 1 ; Jeffrey Crouch 1 ; Michail Strelets 2
@article{CRPHYS_2005__6_4-5_451_0, author = {Michael Czech and Gregory Miller and Jeffrey Crouch and Michail Strelets}, title = {Predicting the near-field evolution of airplane trailing vortices}, journal = {Comptes Rendus. Physique}, pages = {451--466}, publisher = {Elsevier}, volume = {6}, number = {4-5}, year = {2005}, doi = {10.1016/j.crhy.2005.05.005}, language = {en}, }
TY - JOUR AU - Michael Czech AU - Gregory Miller AU - Jeffrey Crouch AU - Michail Strelets TI - Predicting the near-field evolution of airplane trailing vortices JO - Comptes Rendus. Physique PY - 2005 SP - 451 EP - 466 VL - 6 IS - 4-5 PB - Elsevier DO - 10.1016/j.crhy.2005.05.005 LA - en ID - CRPHYS_2005__6_4-5_451_0 ER -
Michael Czech; Gregory Miller; Jeffrey Crouch; Michail Strelets. Predicting the near-field evolution of airplane trailing vortices. Comptes Rendus. Physique, Aircraft trailing vortices, Volume 6 (2005) no. 4-5, pp. 451-466. doi : 10.1016/j.crhy.2005.05.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.05.005/
[1] T. Quackenbush, A. Bilanin, P. Batcho, R. McKilipp, B. Carpenter, Implementation of vortex wake control using SMA-actuated devices, in: Proc. SPIE, vol. 3044, 1997, pp. 134–146
[2] A method for accelerating the destruction of aircraft wake vortices, J. Aircraft, Volume 36 (1999), pp. 398-404
[3] Stability of a four-vortex aircraft wake model, Phys. Fluids, Volume 12 (2000), pp. 2438-2443
[4] Rapidly growing instability mode in trailing multiple-vortex wakes, AIAA J., Volume 39 (2001), pp. 750-754
[5] Active-control system for breakup of airplane trailing vortices, AIAA J., Volume 39 (2001), pp. 2374-2381
[6] Formation and structure of vortex systems generated by unflapped and flapped wing configurations, Z. Flugwiss. Weltraumforsch, Volume 19 (1995), pp. 366-379
[7] A.C. de Bruin, S.H. Hegen, P.B. Rohne, P.R. Spalart, Flow field survey in the trailing vortex system behind a civil aircraft model at high lift, AGARD-CP-584, 1996, pp. 25-1–25-12
[8] L. Jacquin, D. Fabre, P. Geffroy, E. Coustols, The properties of a transport aircraft wake in the extended near-field: an experimental study, AIAA Paper No. 2001-1038, 2001
[9] C. Bellastrada, C. Breitsamter, B. Laschka, Investigation of turbulent wake vortex originating from a large transport aircraft in landing configuration, in: Proc. CEAS Aerospace Aerodynamics Research Conference, 2002, pp. 31.1–31.10
[10] J.D. Jacob, Ö. Savaş, Vortex dynamics in trailing wakes of flapped rectangular wings, AIAA Paper No. 97-0048, 1997
[11] R. Stuff, The near-far field relationship of vortices shed from transport aircraft, AIAA Paper No. 2001-2429, 2001
[12] D.A. Durston, S.M. Walker, D.M. Driver, S.C. Smith, Ö. Savaş, Wake vortex alleviation flow field studies, AIAA Paper No. 2004-1073, 2004
[13] E. Coustols, E. Stumpf, L. Jacquin, F. Moens, H. Vollmers, T. Gerz, Minimized wake: a collaborative research programme on aircraft wake vortices, AIAA Paper No. 2003-0938, 2003
[14] A. Benkenida, G. Jonville, D. Darracq, Numerical study of wake vortices of generic aircraft model, AIAA Paper No. 2001-2428, 2001
[15] E. Stumpf, Numerical study of four-vortex aircraft wakes and layout of corresponding high-lift configurations, AIAA Paper No. 2004-1067, 2004
[16] M. Shur, M. Strelets, A. Travin, P. Spalart, Two numerical studies of trailing vortices, AIAA Paper No. 98-0595, 1998
[17] P. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper No. 92-0439, 1992
[18] M.L. Shur, P. Spalart, On the sensitization of turbulence models to rotation and curvature, Aerospace Sci. Technol., 1997
[19] J.P. Crowder, R.L. Watzlavick, T.K. Krutckoff, Airplane flow-field measurements, in: AIAA/SAE World Aviation Congress, vol. 8 (975535), 1997, pp. 1–9
[20] S.E. Rogers, D. Kwak, An upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations, AIAA Paper No. 88-2583-CP, 1988
[21] The Structure of Turbulent Shear Flow, Cambridge University Press, New York, 1976
[22] Simplified modeling for flaps-down airplane trailing vortices, Bull. Am. Phys. Soc., Volume 46 (2001), p. 159
- A data-driven actuator-line methodology for the simulation of high-lift aircraft wake systems, Computers Fluids, Volume 291 (2025), p. 106578 | DOI:10.1016/j.compfluid.2025.106578
- Evolution of a line vortex in stratified flow, Physical Review Fluids, Volume 4 (2019) no. 6 | DOI:10.1103/physrevfluids.4.064803
- Numerical Simulation of the Wake of an Airliner, Journal of Aircraft, Volume 55 (2018) no. 4, p. 1689 | DOI:10.2514/1.c034349
- , 8th AIAA Atmospheric and Space Environments Conference (2016) | DOI:10.2514/6.2016-3133
- Persistent Contrails and Contrail Cirrus. Part I: Large-Eddy Simulations from Inception to Demise, Journal of the Atmospheric Sciences, Volume 71 (2014) no. 12, p. 4399 | DOI:10.1175/jas-d-13-0316.1
- Numerical and experimental investigation of the mean and turbulent characteristics of a wing-tip vortex in the near field, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Volume 228 (2014) no. 13, p. 2516 | DOI:10.1177/0954410013519598
- , 31st AIAA Applied Aerodynamics Conference (2013) | DOI:10.2514/6.2013-3190
- Aircraft Wake Vortices, Encyclopedia of Aerospace Engineering (2010) | DOI:10.1002/9780470686652.eae024
- Experimental observations of the merger of co-rotating wake vortices, Journal of Fluid Mechanics, Volume 586 (2007), p. 397 | DOI:10.1017/s0022112007006891
- Foreword, Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, p. 393 | DOI:10.1016/j.crhy.2005.05.008
Cité par 10 documents. Sources : Crossref
Commentaires - Politique