[Tourbillons de sillages d'avions et leur contrôle]
Les tourbillons de sillages d'avions sont examinés sous l'angle de leur contrôle. Diverses stratégies visant à réduire les conséquences de la rencontre d'un avion avec les tourbillons d'un avion qui le précède sont ainsi analysées. Ces stratégies couvrent le cas d'un contrôle passif, basé uniquement sur une modification du plan de voilure, jusqu'à celui d'un contrôle actif consistant à faire osciller certaines surfaces portantes. L'efficacité de ces approches est évaluée à partir des résultats d'un simulateur de vol. On montre que le contrôle actif réduit significativement le danger potentiel de l'interaction avion/sillage quand ce contrôle permet de faire interférer de manière destructive les tourbillons. Les mécanismes physiques sous jacents à cette méthode de contrôle sont explicités.
Airplane trailing vortices are examined under natural and forced conditions. Control strategies are presented, which aim to reduce the potential for severe upsets resulting from encounters with the vortices. These range from passive control, using spanload modifications, up to active control, using control-surface oscillations. Flight-simulator results are used to judge the effectiveness of the different control strategies. Active control is shown to be effective for breaking up the trailing vortices, and for reducing the potential for severe vortex-encounter upsets. Stability theory is used to explain the mechanisms underlying this form of control.
Mots-clés : Tourbillons, Sillages d'avions, Contrôle, Instabilités, Croissances transitoires, Théorie de Floquet
Jeffrey Crouch 1
@article{CRPHYS_2005__6_4-5_487_0, author = {Jeffrey Crouch}, title = {Airplane trailing vortices and their control}, journal = {Comptes Rendus. Physique}, pages = {487--499}, publisher = {Elsevier}, volume = {6}, number = {4-5}, year = {2005}, doi = {10.1016/j.crhy.2005.05.006}, language = {en}, }
Jeffrey Crouch. Airplane trailing vortices and their control. Comptes Rendus. Physique, Aircraft trailing vortices, Volume 6 (2005) no. 4-5, pp. 487-499. doi : 10.1016/j.crhy.2005.05.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.05.006/
[1] J.D. Jacob, Ö. Savaş, Vortex dynamics in trailing wakes of flapped rectangular wings, AIAA Paper No. 97-0048, 1997
[2] Active-control system for breakup of airplane trailing vortices, AIAA J., Volume 39 (2001), pp. 2374-2381
[3] M.J. Czech, G.D. Miller, J.D. Crouch, M. Strelets, Near-field evolution of trailing vortices behind aircraft with flaps deployed, AIAA Paper No. 2004-2149, 2004
[4] D.A. Durston, S.M. Walker, D.M. Driver, S.C. Smith, Ö. Savaş, Wake vortex alleviation flow field studies, AIAA Paper No. 2004-1073, 2004
[5] Stability theory for a pair of trailing vortices, AIAA J., Volume 8 (1970), pp. 2172-2179
[6] S.C. Crow, Panel discussion, in: J. Olsen, A. Goldburg, M. Rogers, (Eds.), Aircraft Wake Turbulence and Its Detection, 1971, pp. 551–582
[7] Lifespan of trailing vortices in a turbulent atmosphere, J. Aircraft, Volume 13 (1976), pp. 476-482
[8] A.J. Bilanin, S.E. Widnall, Aircraft wake dissipation by sinusoidal instability and vortex breakdown, AIAA Paper No. 73-107, 1973
[9] J.D. Crouch, Stability of multiple trailing-vortex pairs, AGARD-CP-584, 1996, pp. 17-1–17-8
[10] Instability and transient growth for two trailing-vortex pairs, J. Fluid Mech., Volume 350 (1997), pp. 311-330
[11] A method for accelerating the destruction of aircraft wake vortices, J. Aircraft, Volume 36 (1999), pp. 398-404
[12] Stability of a four-vortex aircraft wake model, Phys. Fluids, Volume 12 (2000), pp. 2438-2443
[13] Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration, J. Fluid Mech., Volume 451 (2002), pp. 319-328
[14] Rapidly growing instability mode in trailing multiple-vortex wakes, AIAA J., Volume 39 (2001), pp. 750-754
[15] L. Jacquin, D. Fabre, P. Geffroy, E. Coustols, The properties of a transport aircraft wake in the extended near-field: an experimental study, AIAA Paper No. 2001-1038, 2001
[16] Active and passive vortex wake mitigation using control surfaces, Aero. Sci. Tech., Volume 9 (2005), pp. 5-18
[17] Lift-generated vortex wakes of subsonic transport aircraft, Prog. Aero. Sci., Volume 35 (1999), pp. 507-660
[18] E. Coustols, E. Stumpf, L. Jacquin, F. Moens, H. Vollmers, T. Gerz, Minimized wake: a collaborative research programme on aircraft wake vortices, AIAA Paper No. 2003-0938, 2003
[19] Airplane trailing vortices, Annu. Rev. Fluid Mech., Volume 30 (1998), pp. 107-138
[20] Numerical simulation of vortices with axial velocity deficits, Phys. Fluids, Volume 7 (1995), pp. 549-558
[21] R. Stuff, The near-far field relationship of vortices shed from transport aircraft, AIAA Paper No. 2001-2429, 2001
[22] Experimental study of the instability of unequal-strength counter-rotating vortex pairs, J. Fluid Mech., Volume 474 (2003), pp. 35-84
[23] R.J. Sammonds, G.W. Stinnett Jr., W.E. Larsen, Wake vortex encounter hazard criteria for two aircraft classes, NASA TM-X73113, 1976
[24] R.E. Loucel, J.D. Crouch, Flight-simulator study of airplane encounters with perturbed trailing vortices, J. Aircraft 42 (2005), in press
[25] Simplified modeling for flaps-down airplane trailing vortices, Bull. Am. Phys. Soc., Volume 46 (2001), p. 159
- On the stability of a pair of vortex rings, Journal of Fluid Mechanics, Volume 979 (2024) | DOI:10.1017/jfm.2023.1012
- Investigation of the influence of control surfaces and fuselage on the structure of a separated flow around a flying vehicle model with a classical configuration, Thermophysics and Aeromechanics, Volume 31 (2024) no. 2, p. 285 | DOI:10.1134/s0869864324020082
- Stability of high-density trailing vortices, Theoretical and Computational Fluid Dynamics, Volume 37 (2023) no. 1, p. 17 | DOI:10.1007/s00162-023-00640-7
- Experimental Attenuation of a Trailing Vortex Inspired by Stability Analysis, IUTAM Laminar-Turbulent Transition, Volume 38 (2022), p. 313 | DOI:10.1007/978-3-030-67902-6_27
- Effect of Multiscale Endplates on Wing-Tip Vortex, AIAA Journal, Volume 59 (2021) no. 5, p. 1614 | DOI:10.2514/1.j059878
- Modal Analysis of Fluid Flows: Applications and Outlook, AIAA Journal, Volume 58 (2020) no. 3, p. 998 | DOI:10.2514/1.j058462
- Direct numerical simulation of a counter-rotating vortex pair interacting with a wall, Journal of Fluid Mechanics, Volume 884 (2020) | DOI:10.1017/jfm.2019.816
- Impingement of a counter-rotating vortex pair on a wavy wall, Journal of Fluid Mechanics, Volume 895 (2020) | DOI:10.1017/jfm.2020.263
- Optimal growth of counter-rotating vortex pairs interacting with walls, Journal of Fluid Mechanics, Volume 904 (2020) | DOI:10.1017/jfm.2020.674
- Mid-wake wing tip vortex dynamics with active flow control, Experimental Thermal and Fluid Science, Volume 98 (2018), p. 38 | DOI:10.1016/j.expthermflusci.2018.05.011
- Computational Analysis of Vortex Wakes Without Near-Field Rollup Characteristics, Journal of Aircraft, Volume 55 (2018) no. 5, p. 2008 | DOI:10.2514/1.c034782
- Active attenuation of a trailing vortex inspired by a parabolized stability analysis, Journal of Fluid Mechanics, Volume 855 (2018) | DOI:10.1017/jfm.2018.701
- Onset of orbital motion in a trailing vortex from an oscillating wing, Journal of Fluid Mechanics, Volume 856 (2018), p. 257 | DOI:10.1017/jfm.2018.697
- Influence of a wall on the three-dimensional dynamics of a vortex pair, Journal of Fluid Mechanics, Volume 817 (2017), p. 339 | DOI:10.1017/jfm.2017.114
- The structure of a trailing vortex from a perturbed wing, Journal of Fluid Mechanics, Volume 824 (2017), p. 701 | DOI:10.1017/jfm.2017.331
- Two- and three-dimensional wake transitions of an impulsively started uniformly rolling circular cylinder, Journal of Fluid Mechanics, Volume 826 (2017), p. 32 | DOI:10.1017/jfm.2017.325
- Non-normal dynamics of time-evolving co-rotating vortex pairs, Journal of Fluid Mechanics, Volume 701 (2012), p. 430 | DOI:10.1017/jfm.2012.171
- Characterization of Surface and Aloft Winds for Advanced Parallel Runway Operations, Transportation Research Record: Journal of the Transportation Research Board, Volume 2300 (2012) no. 1, p. 49 | DOI:10.3141/2300-06
- Effect of differential spoiler settings (DSS) on the wake vortices of a wing at high-lift-configuration (HLC), Aerospace Science and Technology, Volume 15 (2011) no. 7, p. 555 | DOI:10.1016/j.ast.2010.11.001
- Experiments on long-wavelength instability and reconnection of a vortex pair, Physics of Fluids, Volume 23 (2011) no. 2 | DOI:10.1063/1.3531720
- Aircraft Wake Vortices, Encyclopedia of Aerospace Engineering (2010) | DOI:10.1002/9780470686652.eae024
- Influence of Differential Spoiler Settings on the Wake Vortex Characterization and Alleviation, Journal of Aircraft, Volume 47 (2010) no. 5, p. 1728 | DOI:10.2514/1.c000258
- Direct and Large-Eddy Simulations of Merging in Corotating Vortex System, AIAA Journal, Volume 47 (2009) no. 1, p. 157 | DOI:10.2514/1.38026
- Flap Vortex Management Using Active Gurney Flaps, AIAA Journal, Volume 47 (2009) no. 12, p. 2845 | DOI:10.2514/1.41767
- , 4th Flow Control Conference (2008) | DOI:10.2514/6.2008-4186
- Identification of vortex pairs in aircraft wakes from sectional velocity data, Experiments in Fluids, Volume 44 (2008) no. 3, p. 367 | DOI:10.1007/s00348-007-0450-8
- Wake of Transport Flying Wings, Journal of Aircraft, Volume 44 (2007) no. 2, p. 558 | DOI:10.2514/1.24298
- Experimental observations of the merger of co-rotating wake vortices, Journal of Fluid Mechanics, Volume 586 (2007), p. 397 | DOI:10.1017/s0022112007006891
- , 24th AIAA Applied Aerodynamics Conference (2006) | DOI:10.2514/6.2006-2820
- Foreword, Comptes Rendus. Physique, Volume 6 (2005) no. 4-5, p. 393 | DOI:10.1016/j.crhy.2005.05.008
Cité par 30 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier