Comptes Rendus
Fiber lasers integration for LMJ
[Intégration des lasers à fibre pour le LMJ]
Comptes Rendus. Physique, High power fiber lasers and amplifiers, Volume 7 (2006) no. 2, pp. 198-212.

Le dispositif d'injection optique pour l'équipement des grandes installations laser pour la fusion s'appuie sur une architecture arborescente à base de fibres monomodes. A partir d'un oscillateur monomode continu, unique et couplé à une structure à maintien de polarisation, un grand nombre d'impulsions sont générées sur autant de sorties synchrones après avoir été mises en forme. L'optimisation des performances optiques nécessite de maîtriser la dynamique en intensité dans une gamme de valeurs étendues sur plus de 50 dB. Les profils des impulsions, de forme arbitraire à l'intérieur d'une fenêtre de durée 25 ns, sont définis avec une résolution temporelle de 100 ps. La densité spectrale de puissance présente la forme d'une distribution de raies de Bessel contrôlées de manière très précise. Nous présentons les principaux éléments de dimensionnement et les composants développés dans la version actualisée du dispositif.

The Fibre-Injection System in the LIL–LMJ facilities makes use of a single-mode fiber based arborescent architecture. Starting from a unique single-mode oscillator, it consists of a high performance PM design which is dedicated to the generation of pulses onto a large number of synchronous outputs. The optical features to be optimised involve dynamic ranges in excess of 50 dB and the generation of 25 ns wide arbitrary waveforms at 100 ps time resolution, of which the PSD looks like a precisely controlled Bessel distribution. We analyse the complete design issues, together with the optical components which have been developed specifically.

Publié le :
DOI : 10.1016/j.crhy.2006.01.017
Keywords: Fibre amplifiers, Polarisation maintaining, Phase modulation, Pulse shaping
Mots-clés : Amplificateurs fibrés, Maintien de polarisation, Modulation de phase, Mise en forme temporelle

Alain Jolly 1 ; Jean-François Gleyze 1 ; Denis Penninckx 1 ; Nicolas Beck 1 ; Laurent Videau 1 ; Hervé Coïc 1

1 CEA, centre d'études scientifiques et techniques d'Aquitaine, 33114 Le Barp, France
@article{CRPHYS_2006__7_2_198_0,
     author = {Alain Jolly and Jean-Fran\c{c}ois Gleyze and Denis Penninckx and Nicolas Beck and Laurent Videau and Herv\'e Co{\"\i}c},
     title = {Fiber lasers integration for {\protect\emph{LMJ}}},
     journal = {Comptes Rendus. Physique},
     pages = {198--212},
     publisher = {Elsevier},
     volume = {7},
     number = {2},
     year = {2006},
     doi = {10.1016/j.crhy.2006.01.017},
     language = {en},
}
TY  - JOUR
AU  - Alain Jolly
AU  - Jean-François Gleyze
AU  - Denis Penninckx
AU  - Nicolas Beck
AU  - Laurent Videau
AU  - Hervé Coïc
TI  - Fiber lasers integration for LMJ
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 198
EP  - 212
VL  - 7
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.01.017
LA  - en
ID  - CRPHYS_2006__7_2_198_0
ER  - 
%0 Journal Article
%A Alain Jolly
%A Jean-François Gleyze
%A Denis Penninckx
%A Nicolas Beck
%A Laurent Videau
%A Hervé Coïc
%T Fiber lasers integration for LMJ
%J Comptes Rendus. Physique
%D 2006
%P 198-212
%V 7
%N 2
%I Elsevier
%R 10.1016/j.crhy.2006.01.017
%G en
%F CRPHYS_2006__7_2_198_0
Alain Jolly; Jean-François Gleyze; Denis Penninckx; Nicolas Beck; Laurent Videau; Hervé Coïc. Fiber lasers integration for LMJ. Comptes Rendus. Physique, High power fiber lasers and amplifiers, Volume 7 (2006) no. 2, pp. 198-212. doi : 10.1016/j.crhy.2006.01.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.017/

[1] M. André, et al., The LMJ prototype, in: CHOCS 29, Revue Scientifique et Technique de la Direction des Applications Militaires, avril 2004, pp. 6–11

[2] E.I. Moses, et al., The national ignition facility: The world's largest optics and laser system, in: Proc. of SPIE, vol. 5001, Optical Engineering at the Lawrence Livermore National Laboratory, 2003, pp. 1–15

[3] P.J. Wisoff, et al., NIF injection laser system, in: Proc. SPIE, vol. 5341, Optical Engineering at the Lawrence Livermore National Laboratory, 2003, pp. 146–155

[4] A. Jolly, et al., L'injection du faisceau : le pilote, in: CHOCS 29, Revue Scientifique et Technique de la Direction des Applications Militaires, avril 2004, pp. 32–40

[5] A. Jolly et al. Front-end sources of the LIL–LMJ fusion lasers: progress report and prospects, J. Opt. Engrg., Volume 42 (2003) no. 5, pp. 1427-1438

[6] L. Videau, et al., Le lissage optique, in: CHOCS 29, Revue Scientifique et Technique de la Direction des Applications Militaires, avril 2004, pp. 24–31

[7] F. Devaux et al. Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter, J. Light. Tech., Volume 11 ( Decembre 1993 ) no. 12, pp. 1937-1940

[8] L. Videau, Etude théorique de l'effet FM–AM, in: Note Interne CEA/CESTA/DLP/SCSL/LPL DO9 du 04/02/00

[9] W.K. Marshall; A. Yariv Spectrum of the intensity of modulated noisy light after propagation in dispersive fiber, IEEE Phot. Tech. Lett., Volume 12 ( March 2000 ) no. 3, pp. 302-304

[10] G.P. Agrawal Nonlinear Fiber Optics (P.F. Liao; P.L. Kelley, eds.), Academic Press, Inc., 1989, pp. 262-271

[11] G. Canat, et al., 100 μJ generation using a narrow linewidth Er3+–Yb3+ doped fiber MOPA and its modelling, in: CLEO'05, Baltimore, 2005, paper JWB67

[12] L. Goldberg, Method and apparatus for side pumping an optical fiber, patent n WO 97/21124 (1997)

[13] E. Desurvire Erbium-Doped Fiber Amplifiers—Principles and Applications, Wiley–Interscience, J. Wiley & Sons, 2002, p. 12

[14] J.E. Rothenberg Ultrafast picket fence pulse trains to enhance frequency conversion of shaped inertial confinement fusion laser pulses, Appl. Opt., Volume 39 ( December 2000 ) no. 36, pp. 6931-6938

[15] F.T. Stone, Performance and reliability of lithium niobate integrated optical devices, in: SPIE, vol. 992, 1988, pp. 230–239

[16] D. Penninckx, N. Beck, Axis alternation for signal propagation over polarisation-maintaining fibres, IEEE Phot. Tech. Lett., submitted for publication

[17] The smoothing performance of ultrafast pickets on the NIF, in: Rochester-LLE Review, vol. 86, pp. 79–91

  • Mengqiu Fan; Shengtao Lin; Ke Yao; Yifei Qi; Jiaojiao Zhang; Junwen Zheng; Pan Wang; Longqun Ni; Xingyu Bao; Dandan Zhou; Bo Zhang; Kaibo Xiao; Handing Xia; Rui Zhang; Ping Li; Wanguo Zheng; Zinan Wang Spectrum-tailored random fiber laser towards ICF laser facility, Matter and Radiation at Extremes, Volume 8 (2023) no. 2 | DOI:10.1063/5.0129434
  • Zhaoyu Zong; Xiaocheng Tian; Mengqiu Fan; Dandan Zhou; Rui Zhang; Junpu Zhao; Wanguo Zheng; Dangpeng Xu Spectral Failsafe System of High-Power Laser Using Dual Fiber Bragg Gratings, Micromachines, Volume 14 (2023) no. 10, p. 1927 | DOI:10.3390/mi14101927
  • Ping Li; Wei Wang; Jingqin Su; Xiaofeng Wei Analysis on FM-to-AM conversion of SSD beam induced by etalon effect in a high-power laser system, High Power Laser Science and Engineering, Volume 7 (2019) | DOI:10.1017/hpl.2018.74
  • Wei Fan; Youen Jiang; Jiangfeng Wang; Xiaochao Wang; Dajie Huang; Xinghua Lu; Hui Wei; Guoyang Li; Xue Pan; Zhi Qiao; Chao Wang; He Cheng; Peng Zhang; Wenfa Huang; Zhuli Xiao; Shengjia Zhang; Xuechun Li; Jianqiang Zhu; Zunqi Lin Progress of the injection laser system of SG-II, High Power Laser Science and Engineering, Volume 6 (2018) | DOI:10.1017/hpl.2018.31
  • Dangpeng Xu; Xiaocheng Tian; Dandan Zhou; Zhaoyu Zong; Mengqiu Fan; Rui Zhang; Na Zhu; Lianghua Xie; Hongxun Li; Jianjun Wang; Mingzhong Li; Xiaomin Zhang Temporal pulse precisely sculpted millijoule-level fiber laser injection system for high-power laser driver, Applied Optics, Volume 56 (2017) no. 10, p. 2661 | DOI:10.1364/ao.56.002661
  • Li Xue; Shiwei Wang; Ming Li; Liangliang Wang, 2015 5th International Conference on Information Science and Technology (ICIST) (2015), p. 547 | DOI:10.1109/icist.2015.7289032
  • Dangpeng Xu; Zhihua Huang; Jianjun Wang; Mingzhong Li; Honghuan Lin; Rui Zhang; Na Zhu; Yongliang Zhang; Xiaocheng Tian A fiber-based polarization–rotation filter utilized to suppress the FM-to-AM effect in a large-scale laser facility, Journal of Optics, Volume 15 (2013) no. 8, p. 085702 | DOI:10.1088/2040-8978/15/8/085702
  • Z. H. Huang; Y. Deng; D. P. Xu; J. Wang; H. Lin; R. Zhang; X. C. Tian 4 μJ, 3 ns phase-modulated laser pulse from ytterbium-doped polarization-maintaining large-mode-area fiber amplifier, Laser Physics, Volume 22 (2012) no. 7, p. 1244 | DOI:10.1134/s1054660x12070043
  • Jing Li; Honghuan Lin; Feng Jing; Dangpeng Xu; Zhihua Huang; Ying Deng; Yuanchao Geng; Mingzhong Li; Rui Zhang; Na Zhu; Jianjun Wang Intermodal interference induced significant frequency modulation to amplitude modulation conversion in a broadband large-mode-area fiber laser, Optics Letters, Volume 36 (2011) no. 7, p. 1053 | DOI:10.1364/ol.36.001053
  • David I. Hillier; David N. Winter; Nicholas W. Hopps Pulse generation and preamplification for long pulse beamlines of Orion laser facility, Applied Optics, Volume 49 (2010) no. 16, p. 3006 | DOI:10.1364/ao.49.003006
  • Xu Dangpeng; Wang Jianjun; Li Mingzhong; Lin Honghuan; Zhang Rui; Deng Ying; Deng Qinghua; Huang Xiaodong; Wang Mingzhe; Ding Lei; Tang Jun Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems, Optics Express, Volume 18 (2010) no. 7, p. 6621 | DOI:10.1364/oe.18.006621
  • Alain Jolly; Nelly Deguil Robin; Jacques Luce; Gérard Deschaseaux Generation of variable width pulses from an Yb^3+: YAG Integrated Dumper – Regenerative Amplifier, Optics Express, Volume 15 (2007) no. 2, p. 466 | DOI:10.1364/oe.15.000466
  • Denis Penninckx; Nicolas Beck; Jean-Franois Gleyze; Laurent Videau Signal Propagation Over Polarization-Maintaining Fibers: Problem and Solutions, Journal of Lightwave Technology, Volume 24 (2006) no. 11, p. 4197 | DOI:10.1109/jlt.2006.884189

Cité par 13 documents. Sources : Crossref

Commentaires - Politique