Fiber laser systems offer unique properties for the amplification of ultrashort pulses to high powers. Two approaches are discussed, the amplification of linearly chirped parabolic pulses and a fiber based chirped pulse amplification system. Using the first method, we succeeded to generate 17-W average power of linearly chirped parabolic pulses at 75 MHz repetition rate and diffraction-limited beam quality in a large-mode-area ytterbium-doped fiber amplifier. The recompression of these pulses with an efficiency of 60% resulted in 80-fs pulses with a peak power of 1.7 MW. Furthermore, we report on a diode-pumped ytterbium-doped double-clad fiber based chirped pulse amplification system delivering 220-fs pulses, at 1040 nm wavelength, 73 MHz repetition rate and up to 131 W average power, corresponding to a peak power of 8 MW. Key element is a diffraction grating compressor consisting of highly efficient transmission gratings in fused silica allowing the recompression at this high power.
Les systèmes de lasers à fibre offrent des propriétés uniques pour l'amplification d'impulsions ultra-brèves. Deux approches sont discutées, l'amplification d'impulsions paraboliques « chirpées » linéairement et une configuration CPA (chirped pulse amplification). En utilisant la première méthode, nous avons obtenu des impulsions paraboliques « chirpées » avec un taux de répétition de 75 MHz, une puissance moyenne de 17 W dans une fibre à large surface de mode et une qualité de faisceau en limite de diffraction. La recompression de ces impulsions, obtenues avec une efficacité de 60%, a produit des impulsions de 80 fs avec une puissance crête de 1,7 MW. Nous présentons, dans un deuxième temps, les résultats obtenus avec une architecture CPA utilisant une fibre double gaine dopée ytterbium qui délivre des impulsions de 220 fs à 1040 nm avec un taux de répétition de 73 MHz. La puissance moyenne atteint 131 W correspondant à une puissance crête de 8 MW. L'élément critique est constitué par un compresseur à réseau de diffraction. Il est composé de réseaux en silice fondue très efficaces en transmission pour la recompression des impulsions à ce niveau élevé de puissance.
Mot clés : Amplificateurs et lasers à fibre, Ytterbium, Impulsions ultra-brèves, Effets non-linéaires optiques
Jens Limpert 1, 2; Fabian Röser 1; Thomas Schreiber 1; Inka Manek-Hönninger 2; Francois Salin 2; Andreas Tünnermann 1
@article{CRPHYS_2006__7_2_187_0, author = {Jens Limpert and Fabian R\"oser and Thomas Schreiber and Inka Manek-H\"onninger and Francois Salin and Andreas T\"unnermann}, title = {Ultrafast high power fiber laser systems}, journal = {Comptes Rendus. Physique}, pages = {187--197}, publisher = {Elsevier}, volume = {7}, number = {2}, year = {2006}, doi = {10.1016/j.crhy.2006.01.016}, language = {en}, }
TY - JOUR AU - Jens Limpert AU - Fabian Röser AU - Thomas Schreiber AU - Inka Manek-Hönninger AU - Francois Salin AU - Andreas Tünnermann TI - Ultrafast high power fiber laser systems JO - Comptes Rendus. Physique PY - 2006 SP - 187 EP - 197 VL - 7 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2006.01.016 LA - en ID - CRPHYS_2006__7_2_187_0 ER -
%0 Journal Article %A Jens Limpert %A Fabian Röser %A Thomas Schreiber %A Inka Manek-Hönninger %A Francois Salin %A Andreas Tünnermann %T Ultrafast high power fiber laser systems %J Comptes Rendus. Physique %D 2006 %P 187-197 %V 7 %N 2 %I Elsevier %R 10.1016/j.crhy.2006.01.016 %G en %F CRPHYS_2006__7_2_187_0
Jens Limpert; Fabian Röser; Thomas Schreiber; Inka Manek-Hönninger; Francois Salin; Andreas Tünnermann. Ultrafast high power fiber laser systems. Comptes Rendus. Physique, Volume 7 (2006) no. 2, pp. 187-197. doi : 10.1016/j.crhy.2006.01.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.016/
[1] Ultrafast Lasers, Marcel Dekker, New York, 2002
[2] 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser, Opt. Lett., Volume 27 (2002), p. 1162
[3] 60-W average power in 810-fs pulses from a thin disk Yb:YAG laser, Opt. Lett., Volume 28 (2003), p. 367
[4] Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power, Opt. Express, Volume 12 (2004), pp. 6088-6092
[6] The renaissance and bright future of fibre lasers, J. Phys. B: At. Mol. Opt. Phys., Volume 38 (2005), pp. 681-693
[7] Double-clad, offset core Nd fiber laser, Optical Fiber Sensors, 1988 OSA Technical Digest Series, vol. 2, Optical Society of America, Washington, DC, 1988 (postdeadline paper PD5)
[8] Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-strip laser diode, Opt. Lett., Volume 24 (1999), p. 673
[9] Nonlinear Fiber Optics, Academic, San Diego, CA, 1995
[10] Power scaling in passively mode-locked large-mode area fiber lasers, IEEE Photon. Technol. Lett., Volume 10 (1998), p. 1718
[11] Single-mode excitation of multimode fibers with ultrashort pulses, Opt. Lett., Volume 23 (1998) no. 1, p. 52
[12] Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Opt. Express, Volume 12 (2004), pp. 1313-1319
[13] Mode-scalable fiber-based chirped pulse amplification systems, IEEE J. Sel. Top. Quantum Electron., Volume 7 (2001), pp. 504-517
[14] Wave-breaking-free pulses in nonlinear-optical fibers, J. Opt. Soc. Amer. B, Volume 10 (1993), p. 1185
[15] Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers, Opt. Lett., Volume 21 (1996) no. 1, p. 68
[16] Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers, J. Opt. Soc. Amer. B, Volume 19 (2002), p. 461
[17] Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers, Phys. Rev. Lett., Volume 84 (2000), p. 6010
[18] M.E. Fermann, M.L. Stock, A. Galvanauskas, G.C. Cho, B.C., Thomson, Third-order dispersion control in ultrafast Yb fiber amplifiers, in: Advanced Solid-State Lasers, in: OSA Trends in Optics and Photonics Series, vol. 50, 2001, p. 355
[19] Compression of amplified chirped optical pulses, Opt. Com., Volume 55 (1985), pp. 447-449
[20] 131 W 220 fs fiber laser system, Opt. Lett., Volume 30 (2005), pp. 2754-2756
[21] High-energy, high-power ytterbium-doped Q-switched fiber laser, Opt. Lett., Volume 25 (2000), p. 37
[22] Multimode Er-doped fiber for single-transverse-mode amplification, Appl. Phys. Lett., Volume 74 (1999), pp. 1528-1530
[23] J. Limpert, H. Zellmer, A. Tünnermann, T. Pertsch, F. Lederer, Suppression of higher order modes in a multimode fiber amplifier using efficient gain-loss-management (GLM), Adv. Solid State Lasers 2002, Quebéc City, Canada, paper MB20
[24] Single-mode excitation of multimode fibers with ultrashort pulses, Opt. Lett., Volume 23 (1998), pp. 52-54
[25] J.A. Alvarez-Chavez, A.B. Grudinin, J. Nilsson, P.W. Turner, W.A. Clarkson, Mode selection in high power cladding pumped fibre lasers with tapered section, in: Conference on Lasers and Electro-Optics, OSA Technical Digest, Washington, DC, OSA, 1999, p. 247
[26] Mode-scalable fiber-based chirped pulse amplification systems, IEEE J. Sel. Top. Quantum Electron., Volume 7 (2001), pp. 504-517
[27] Single-mode operation of a coiled multimode fiber amplifier, Opt. Lett., Volume 25 (2000), pp. 442-444
[28] Bending loss of propagation modes in arbitrary-index profile optical fibers, Appl. Opt., Volume 17 (1978), pp. 1499-1506
[29] Photonic crystal fibers, Science, Volume 299 (2003), pp. 358-362
[30] All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., Volume 21 (1996), p. 1547
[31] Endlessly single-mode photonic crystal fiber, Opt. Lett., Volume 22 (1997), pp. 961-963
[32] Low-loss criterion and effective area considerations for photonic crystal fibers, J. Opt. A: Pure Appl. Opt., Volume 5 (2003), p. 163
[33] Improved large-mode-area endlessly singlemode photonic crystal fibers, Opt. Lett., Volume 28 (2003), p. 393
[34] J. Limpert, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, Ch. Jacobsen, H. Simonsen, N.A. Mortensen, Extended large-mode-area single mode microstructured fiber laser, in: Conference on Lasers and Electro-Optics 2004, San Francisco, session CMS
[35] High power air-clad photonic crystal fibre laser, Opt. Express, Volume 11 (2003), pp. 48-53
[36] High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express, Volume 11 (2003), pp. 818-823
[37] Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Opt. Express, Volume 12 (2004), pp. 1313-1319
[38] High-power rod-type photonic crystal fiber laser, Opt. Express, Volume 13 (2005), pp. 1055-1058
[39] Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation, Opt. Express, Volume 11 (2003), pp. 2982-2990
Cited by Sources:
Comments - Policy