Comptes Rendus
Ultrafast high power fiber laser systems
Comptes Rendus. Physique, Volume 7 (2006) no. 2, pp. 187-197.

Fiber laser systems offer unique properties for the amplification of ultrashort pulses to high powers. Two approaches are discussed, the amplification of linearly chirped parabolic pulses and a fiber based chirped pulse amplification system. Using the first method, we succeeded to generate 17-W average power of linearly chirped parabolic pulses at 75 MHz repetition rate and diffraction-limited beam quality in a large-mode-area ytterbium-doped fiber amplifier. The recompression of these pulses with an efficiency of 60% resulted in 80-fs pulses with a peak power of 1.7 MW. Furthermore, we report on a diode-pumped ytterbium-doped double-clad fiber based chirped pulse amplification system delivering 220-fs pulses, at 1040 nm wavelength, 73 MHz repetition rate and up to 131 W average power, corresponding to a peak power of 8 MW. Key element is a diffraction grating compressor consisting of highly efficient transmission gratings in fused silica allowing the recompression at this high power.

Les systèmes de lasers à fibre offrent des propriétés uniques pour l'amplification d'impulsions ultra-brèves. Deux approches sont discutées, l'amplification d'impulsions paraboliques « chirpées » linéairement et une configuration CPA (chirped pulse amplification). En utilisant la première méthode, nous avons obtenu des impulsions paraboliques « chirpées » avec un taux de répétition de 75 MHz, une puissance moyenne de 17 W dans une fibre à large surface de mode et une qualité de faisceau en limite de diffraction. La recompression de ces impulsions, obtenues avec une efficacité de 60%, a produit des impulsions de 80 fs avec une puissance crête de 1,7 MW. Nous présentons, dans un deuxième temps, les résultats obtenus avec une architecture CPA utilisant une fibre double gaine dopée ytterbium qui délivre des impulsions de 220 fs à 1040 nm avec un taux de répétition de 73 MHz. La puissance moyenne atteint 131 W correspondant à une puissance crête de 8 MW. L'élément critique est constitué par un compresseur à réseau de diffraction. Il est composé de réseaux en silice fondue très efficaces en transmission pour la recompression des impulsions à ce niveau élevé de puissance.

Published online:
DOI: 10.1016/j.crhy.2006.01.016
Keywords: Fiber lasers and amplifiers, Ytterbium, Ultra-short laser pulses, Nonlinear fiber optics
Mot clés : Amplificateurs et lasers à fibre, Ytterbium, Impulsions ultra-brèves, Effets non-linéaires optiques

Jens Limpert 1, 2; Fabian Röser 1; Thomas Schreiber 1; Inka Manek-Hönninger 2; Francois Salin 2; Andreas Tünnermann 1

1 Friedrich Schiller University Jena, Institute of Applied Physics, Albert-Einstein-Strasse 15, 07745 Jena, Germany
2 Celia-Pala, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
@article{CRPHYS_2006__7_2_187_0,
     author = {Jens Limpert and Fabian R\"oser and Thomas Schreiber and Inka Manek-H\"onninger and Francois Salin and Andreas T\"unnermann},
     title = {Ultrafast high power fiber laser systems},
     journal = {Comptes Rendus. Physique},
     pages = {187--197},
     publisher = {Elsevier},
     volume = {7},
     number = {2},
     year = {2006},
     doi = {10.1016/j.crhy.2006.01.016},
     language = {en},
}
TY  - JOUR
AU  - Jens Limpert
AU  - Fabian Röser
AU  - Thomas Schreiber
AU  - Inka Manek-Hönninger
AU  - Francois Salin
AU  - Andreas Tünnermann
TI  - Ultrafast high power fiber laser systems
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 187
EP  - 197
VL  - 7
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.01.016
LA  - en
ID  - CRPHYS_2006__7_2_187_0
ER  - 
%0 Journal Article
%A Jens Limpert
%A Fabian Röser
%A Thomas Schreiber
%A Inka Manek-Hönninger
%A Francois Salin
%A Andreas Tünnermann
%T Ultrafast high power fiber laser systems
%J Comptes Rendus. Physique
%D 2006
%P 187-197
%V 7
%N 2
%I Elsevier
%R 10.1016/j.crhy.2006.01.016
%G en
%F CRPHYS_2006__7_2_187_0
Jens Limpert; Fabian Röser; Thomas Schreiber; Inka Manek-Hönninger; Francois Salin; Andreas Tünnermann. Ultrafast high power fiber laser systems. Comptes Rendus. Physique, Volume 7 (2006) no. 2, pp. 187-197. doi : 10.1016/j.crhy.2006.01.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.016/

[1] M.E. Fermann; A. Galvanauskas; G. Sucha Ultrafast Lasers, Marcel Dekker, New York, 2002

[2] F. Brunner; T. Südmeyer; E. Innerhofer; R. Paschotta; F. Mourier-Genoud; U. Keller; J. Gao; K. Contag; A. Giesen; V.E. Kisel; V.G. Shcherbitsky; N.V. Kuleshov 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser, Opt. Lett., Volume 27 (2002), p. 1162

[3] E. Innerhofer; T. Südmeyer; F. Brunner; R. Häring; A. Aschwanden; R. Paschotta; C. Hönninger; M. Kumkar; U. Keller 60-W average power in 810-fs pulses from a thin disk Yb:YAG laser, Opt. Lett., Volume 28 (2003), p. 367

[4] Y. Jeong; J.K. Sahu; D.N. Payne; J. Nilsson Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power, Opt. Express, Volume 12 (2004), pp. 6088-6092

[5] www.ipgphotonics.com

[6] A. Tünnermann; T. Schreiber; F. Röser; A. Liem; S. Höfer; H. Zellmer; S. Nolte; J. Limpert The renaissance and bright future of fibre lasers, J. Phys. B: At. Mol. Opt. Phys., Volume 38 (2005), pp. 681-693

[7] E. Snitzer; H. Po; F. Hakimi; R. Tumminelli; B.C. McCollum Double-clad, offset core Nd fiber laser, Optical Fiber Sensors, 1988 OSA Technical Digest Series, vol. 2, Optical Society of America, Washington, DC, 1988 (postdeadline paper PD5)

[8] L. Goldberg; J.P. Koplow; D.A.V. Kliner Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-strip laser diode, Opt. Lett., Volume 24 (1999), p. 673

[9] G.P. Agrawal Nonlinear Fiber Optics, Academic, San Diego, CA, 1995

[10] N.G.R. Broderick; H.L. Offerhaus; D.J. Richardson; R.A. Sammut Power scaling in passively mode-locked large-mode area fiber lasers, IEEE Photon. Technol. Lett., Volume 10 (1998), p. 1718

[11] M.E. Fermann Single-mode excitation of multimode fibers with ultrashort pulses, Opt. Lett., Volume 23 (1998) no. 1, p. 52

[12] J. Limpert; A. Liem; M. Reich; T. Schreiber; S. Nolte; H. Zellmer; A. Tünnermann; J. Broeng; A. Petersson; C. Jakobsen Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Opt. Express, Volume 12 (2004), pp. 1313-1319

[13] A. Galvanauskas Mode-scalable fiber-based chirped pulse amplification systems, IEEE J. Sel. Top. Quantum Electron., Volume 7 (2001), pp. 504-517

[14] D. Anderson; M. Desaix; M. Karlson; M. Lisak; M.L. Quiroga-Teixeiro Wave-breaking-free pulses in nonlinear-optical fibers, J. Opt. Soc. Amer. B, Volume 10 (1993), p. 1185

[15] K. Tamura; M. Nakazawa Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers, Opt. Lett., Volume 21 (1996) no. 1, p. 68

[16] V.I. Kruglov; A.C. Peacock; J.D. Harvey; J.M. Dudley Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers, J. Opt. Soc. Amer. B, Volume 19 (2002), p. 461

[17] M.E. Fermann; V.I. Kruglov; B.C. Thomson; J.M. Dudley; J.D. Harvey Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers, Phys. Rev. Lett., Volume 84 (2000), p. 6010

[18] M.E. Fermann, M.L. Stock, A. Galvanauskas, G.C. Cho, B.C., Thomson, Third-order dispersion control in ultrafast Yb fiber amplifiers, in: Advanced Solid-State Lasers, in: OSA Trends in Optics and Photonics Series, vol. 50, 2001, p. 355

[19] D. Strickland; G. Mourou Compression of amplified chirped optical pulses, Opt. Com., Volume 55 (1985), pp. 447-449

[20] F. Röser; J. Rothhard; B. Ortac; A. Liem; O. Schmidt; T. Schreiber; J. Limpert; A. Tünnermann 131 W 220 fs fiber laser system, Opt. Lett., Volume 30 (2005), pp. 2754-2756

[21] J.A. Alvarez-Chavez; H.L. Offerhaus; J. Nilsson; P.W. Turner; W.A. Clarkson; D.J. Richardson High-energy, high-power ytterbium-doped Q-switched fiber laser, Opt. Lett., Volume 25 (2000), p. 37

[22] J.M. Sousa; O.G. Okhotnikov Multimode Er-doped fiber for single-transverse-mode amplification, Appl. Phys. Lett., Volume 74 (1999), pp. 1528-1530

[23] J. Limpert, H. Zellmer, A. Tünnermann, T. Pertsch, F. Lederer, Suppression of higher order modes in a multimode fiber amplifier using efficient gain-loss-management (GLM), Adv. Solid State Lasers 2002, Quebéc City, Canada, paper MB20

[24] M. Fermann Single-mode excitation of multimode fibers with ultrashort pulses, Opt. Lett., Volume 23 (1998), pp. 52-54

[25] J.A. Alvarez-Chavez, A.B. Grudinin, J. Nilsson, P.W. Turner, W.A. Clarkson, Mode selection in high power cladding pumped fibre lasers with tapered section, in: Conference on Lasers and Electro-Optics, OSA Technical Digest, Washington, DC, OSA, 1999, p. 247

[26] A. Galvanauskas Mode-scalable fiber-based chirped pulse amplification systems, IEEE J. Sel. Top. Quantum Electron., Volume 7 (2001), pp. 504-517

[27] P. Koplow; D. Kliner; L. Goldberg Single-mode operation of a coiled multimode fiber amplifier, Opt. Lett., Volume 25 (2000), pp. 442-444

[28] J.I. Sakai; T. Kimura Bending loss of propagation modes in arbitrary-index profile optical fibers, Appl. Opt., Volume 17 (1978), pp. 1499-1506

[29] J.P. Russell Photonic crystal fibers, Science, Volume 299 (2003), pp. 358-362

[30] J. Knight; T. Birks; P. Russell; D. Atkin All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett., Volume 21 (1996), p. 1547

[31] T. Birks; J. Knight; P. Russell Endlessly single-mode photonic crystal fiber, Opt. Lett., Volume 22 (1997), pp. 961-963

[32] N.A. Mortensen; J.R. Folkenberg Low-loss criterion and effective area considerations for photonic crystal fibers, J. Opt. A: Pure Appl. Opt., Volume 5 (2003), p. 163

[33] N.A. Mortensen; M.D. Nielsen; J.R. Folkenberg; A. Petersson; H.R. Simonsen Improved large-mode-area endlessly singlemode photonic crystal fibers, Opt. Lett., Volume 28 (2003), p. 393

[34] J. Limpert, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, Ch. Jacobsen, H. Simonsen, N.A. Mortensen, Extended large-mode-area single mode microstructured fiber laser, in: Conference on Lasers and Electro-Optics 2004, San Francisco, session CMS

[35] W.J. Wadsworth; R.M. Percival; G. Bouwmans; J.C. Knight; P.S.J. Russell High power air-clad photonic crystal fibre laser, Opt. Express, Volume 11 (2003), pp. 48-53

[36] J. Limpert; T. Schreiber; S. Nolte; H. Zellmer; T. Tünnermann; R. Iliew; F. Lederer; J. Broeng; G. Vienne; A. Petersson; C. Jakobsen High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express, Volume 11 (2003), pp. 818-823

[37] J. Limpert; A. Liem; M. Reich; T. Schreiber; S. Nolte; H. Zellmer; A. Tünnermann; J. Broeng; A. Petersson; C. Jakobsen Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Opt. Express, Volume 12 (2004), pp. 1313-1319

[38] J. Limpert; N. Deguil-Robin; I. Manek-Hönninger; F. Salin; F. Röser; A. Liem; T. Schreiber; S. Nolte; H. Zellmer; A. Tünnermann; J. Broeng; A. Petersson; C. Jakobsen High-power rod-type photonic crystal fiber laser, Opt. Express, Volume 13 (2005), pp. 1055-1058

[39] J. Limpert; T. Schreiber; A. Liem; S. Nolte; H. Zellmer; T. Peschel; V. Guyenot; A. Tünnermann Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation, Opt. Express, Volume 11 (2003), pp. 2982-2990

Cited by Sources:

Comments - Policy