Une dislocation dissociée dans un cristal mince, élastiquement anisotrope, trouve un équilibre mécanique qui dépend de façon critique de la position des dislocations partielles. Une analyse à deux dimensions est proposée, basée sur la connaissance du champ élastique d'une seule dislocation dans ce milieu confiné. Elle est appliquée à la détermination de la distance de séparation de deux partielles dans un alliage cuivre–aluminium à forte anisotropie.
The determination of the separation distance S between the two partials of a dissociated dislocation placed in an elastically anisotropic thin crystal is critically dependent on several parameters: the elastic constants, the Burgers vectors of the partials, the orientation of the fault plane in the crystal, the stacking fault energy per unit surface, the thickness h of the foil and the position of one partial in the crystal. The calculation of S is proposed from (i) an equation expressing the mechanical equilibrium of the two partials and (ii), the knowledge of the displacement field u of an isolated dislocation parallel to the free surfaces of a thin plate-like crystal. Since two theories are available in the literature to express u, both were tested for the calculation of S. One of them was preferred because of its better numerical efficiency and its fully explicit formulation in function of the space variables. This last property permits an easy derivation to be done and is useful to discuss the stability of the mechanical equilibrium of two partials. Numerical applications are presented for a screw dislocation dissociated into two 30° partials, located in a thin face cubic centred Cu-13.43 at.%Al crystal (anisotropy ratio = 3.85). Assuming a fixed partial lying in the mid plane of the foil, around which turns a close-packed fault plane, the locus of the other partial is described by polar graphs. These graphs are quite different in the isotropic approximation.
Accepté le :
Publié le :
Keywords: Thin film, Dislocation, Dissociation, Anisotropic elasticity
Roland Bonnet 1 ; Sami Youssef 2
@article{CRPHYS_2006__7_5_567_0, author = {Roland Bonnet and Sami Youssef}, title = {\'Equilibre d'une dislocation dissoci\'ee plac\'ee dans une lame mince \'elastiquement anisotrope}, journal = {Comptes Rendus. Physique}, pages = {567--572}, publisher = {Elsevier}, volume = {7}, number = {5}, year = {2006}, doi = {10.1016/j.crhy.2006.06.001}, language = {fr}, }
TY - JOUR AU - Roland Bonnet AU - Sami Youssef TI - Équilibre d'une dislocation dissociée placée dans une lame mince élastiquement anisotrope JO - Comptes Rendus. Physique PY - 2006 SP - 567 EP - 572 VL - 7 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2006.06.001 LA - fr ID - CRPHYS_2006__7_5_567_0 ER -
Roland Bonnet; Sami Youssef. Équilibre d'une dislocation dissociée placée dans une lame mince élastiquement anisotrope. Comptes Rendus. Physique, Volume 7 (2006) no. 5, pp. 567-572. doi : 10.1016/j.crhy.2006.06.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.06.001/
[1] Investigations of dislocation strain fields using weak-beams, Philos. Mag., Volume 20 (1969), pp. 1265-1270
[2] Transmission Electron Microscopy III. Imaging, Plenum Press, New York, 1996
[3] Non-parallel dissociation of dislocations in thin foils, Philos. Mag., Volume 32 (1975), pp. 81-97
[4] Finite dislocation elements in finite media, Phys. Stat. Sol. (b), Volume 80 (1977), pp. 441-450
[5] K. Scheerschmidt, U. Richter, Electron diffraction contrast of slip traces and slip bands, in: Proc. 10th Hungarian Diffraction Conference, Balatonaliga, 1980, pp. A33–A34
[6] Dislocation motion in thin Cu foils: a comparison between computer simulations and experiment, Acta Mater., Volume 52 (2004), pp. 1535-1542
[7] Pile-ups in thin foils: application to transmission electron microscopy analysis of short-range-order, Philos. Mag., Volume 84 (2004), pp. 807-824
[8] High resolution electron microscopy of dissociated dislocations in silicon with a normal-incident electron beam, Philos. Mag., Volume 73 (1996), pp. 431-441
[9] Cours d'élasticité, Dunod Université, Bordas, Paris, 1982 (p. 64)
[10] Elasticity theory of a thin bicrystal distorted by an interfacial dislocation array parallel to the free surfaces, Philos. Mag., Volume 51 (1985), pp. 51-58
[11] Fields of displacements and stresses of rectilinear dislocations in an anisotropic plate, Sov. Phys. Crystallogr., Volume 32 (1987), pp. 320-324 (1988 American of Physics)
[12] Periodic elastic fields in anisotropic two-phase media. Application to interfacial dislocations, Acta Metallurg., Volume 29 (1981), pp. 437-445
[13] The dislocation core cut-off parameter estimated from stacking-fault nodes in a Cu–Al alloy, Philos. Mag. A, Volume 42 (1980), pp. 185-194
[14] Theory of Dislocations, Wiley, New York, 1982 (p. 835)
[15] Une lame mince biphasée déformée par une dislocation interfaciale, C. R. Acad. Sci. Paris série II, Volume 318 (1994), pp. 289-295
[16] Détermination par extensométrie et mesures ultrasonores des six constantes élastiques du cristal Al2Cu (θ). Discussion de l'anisotropie, J. Appl. Cryst., Volume 12 (1979), pp. 151-155
Cité par Sources :
Commentaires - Politique