[Introduction au transport turbulent dans les plasmas de fusion]
Cette introduction présente les principales instabilités à l'origine de la turbulence dans les plasmas de tokamak, ainsi que les principales caractéristiques du transport turbulent qui en résulte. Les techniques usuelles permettant de construire un modèle de transport y sont décrites. Ces modèles peuvent être testés en analysant des régimes stationnaires et transitoires. Une autre façon de tester la théorie est d'utiliser un principe de similitude analogue à celui utilisé en mécanique des fluides. Finalement, les mécanismes physiques conduisant à la formation et l'entretien des barrières de transport sont décrits et commentés.
This introduction presents the main instabilities responsible for turbulence in tokamak plasmas, and the prominent features of the resulting transport. The usual techniques to construct reduced transport models are described. These models can be tested by analysing steady state and transient regimes. Another way to test the theory is to use a similarity principle, similar to the one used in fluid mechanics. Finally, the physics involved in the formation and sustainment of transport barriers is presented.
Mots-clés : Plasmas de fusion, Turbulence dans les plasmas
Xavier Garbet 1
@article{CRPHYS_2006__7_6_573_0, author = {Xavier Garbet}, title = {Introduction to turbulent transport in fusion plasmas}, journal = {Comptes Rendus. Physique}, pages = {573--583}, publisher = {Elsevier}, volume = {7}, number = {6}, year = {2006}, doi = {10.1016/j.crhy.2006.06.002}, language = {en}, }
Xavier Garbet. Introduction to turbulent transport in fusion plasmas. Comptes Rendus. Physique, Turbulent transport in fusion magnetised plasmas, Volume 7 (2006) no. 6, pp. 573-583. doi : 10.1016/j.crhy.2006.06.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.06.002/
[1] Rev. Mod. Phys., 71 (1999), p. 735
[2] Collective Modes in Inhomogeneous Plasmas, IOP, 2000
[3] Phys. Fluids, 30 (1987), p. 807
[4] Phys. Plasmas, 7 (2000), p. 1904
[5] Y. Idomura, T.H. Watanabe, H. Sugama, Kinetic simulations of turbulent fusion plasmas, C. R. Physique 7 (2006), this issue
[6] A.G. Peeters, C. Angioni, G. Tardini, Transport modelling, C. R. Physique 7 (2006), this issue
[7] P. Mantica, F. Ryter, Perturbative studies of turbulent transport in fusion plasmas, C. R. Physique 7 (2006), this issue
[8] Nucl. Fusion, 30 (1990), p. 983
[9] et al. Phys. Plasmas, 4 (1997), p. 2482
[10] et al. Phys. Plasmas, 2 (1995), p. 2381
[11] et al. Nucl. Fusion, 42 (2002), p. 892
[12] et al. Plasma Phys. Control. Fusion, 39 (1997), p. 261
[13] Nucl. Fusion, 21 (1981), p. 1363
[14] Plasma Phys. Control. Fusion, 43 (2001), p. 1503
[15] D.C. McDonald, The dimensionless scaling of ELMy H-mode confinement, C. R. Physique 7 (2006), this issue
[16] Sov. J. Plasma Phys., 1 (1975), p. 295
[17] Nucl. Fusion, 17 (1977), p. 1047
[18] Phys. Plasmas, 3 (1996), p. 1898
[19] Phys. Plasmas, 6 (1999), p. 3267
[20] Phys. Rev. Lett., 88 (2002), p. 195004
[21] Phys. Rev. Lett., 91 (2003), p. 045001
[22] , Reviews of Plasma Physics, vol. 5, Consultant Bureau, New York, 1970, p. 249
(M.A. Leontovitch, ed.)[23] et al. Plasma Phys. Control. Fusion, 47 (2005), p. R35
[24] Phys. Plasmas, 8 (2001), p. 744
[25] P. Gohil, Edge transport barriers in magnetic fusion plasmas, C. R. Physique 7 (2006), this issue
[26] T. Tala, X. Garbet, JET EFDA contributors, Physics of Internal Transport Barriers, C. R. Physique 7 (2006), this issue
[27] U. Stroth, M. Ramisch, Towards turbulence control in magnetised plasmas, C. R. Physique 7 (2006), this issue
[28] Plasma Phys. Control. Fusion, 36 (1994), p. A291
[29] Nucl. Fusion, 29 (1989), p. 11
[30] Plasma Phys. Control. Fusion, 45 (2003), p. R1
[31] et al. Nucl. Fusion, 44 (2004), p. R1
[32] Rev. Mod. Phys., 72 (2000), p. 109
[33] Phys. Plasmas, 6 (1999), p. 4418
[34] Phys. Plasmas, 1 (1994), p. 2229
[35] Phys. Fluids B, 2 (1990), p. 1
[36] et al. Phys. Rev. Lett., 77 (1996), p. 494
[37] et al. Phys. Plasmas, 4 (1997), p. 1792
[38] et al. Phys. Plasmas, 10 (2003), p. 2881
[39] Phys. Rev. Lett., 40 (1978), p. 396
[40] et al. Phys. Rev. Lett., 77 (1996), p. 494
[41] Nucl. Fusion, 19 (1979), p. 715
[42] et al. Plasma Physics Control. Fusion, 46 (2004), p. 1181
[43] C. Hidalgo, B.Ph. van Milligen, M. Angeles Pedrosa, Intermittency and structures in edge plasma turbulence, C. R. Physique 7 (2006), this issue
[44] S. Benkadda, Open issues and trends in turbulent transport, C. R. Physique 7 (2006), this issue
[45] M.A. Beer, Ph.D. thesis, Princeton University, 1995
[46] et al. Science, 281 (1998), p. 1835
[47] Phys. Plasmas, 2 (1995), p. 3640
[48] Phys. Rev. Lett., 61 (1988), p. 2205
[49] Phys. Plasmas, 7 (2000), p. 1904
[50] Phys. Rev. Lett., 85 (2000), p. 4892
[51] P. Hennequin, Scaling laws of density fluctuations in tokamak plasmas, C. R. Physique 7 (2006), this issue
[52] et al. Phys. Rev. Lett., 62 (1989), p. 1844
[53] et al. Phys. Rev. Lett., 77 (1996), p. 3145
[54] et al. Plasma Phys. Control. Fusion, 46 (2004), p. B121
[55] et al. Phys. Rev. Lett., 69 (1992), p. 1375
[56] Phys. Rev. Lett., 74 (1995), p. 395
[57] et al. Phys. Rev. Lett., 93 (2004), p. 165002
[58] Phys. Rev. Lett., 84 (2000), p. 1192
- Managing the complexity of plasma physics in control systems engineering, Fusion Engineering and Design, Volume 203 (2024), p. 114436 | DOI:10.1016/j.fusengdes.2024.114436
- Influence of collisions on trapped-electron modes in tokamaks and low-shear stellarators, Physics of Plasmas, Volume 31 (2024) no. 5 | DOI:10.1063/5.0199265
- Simulation campaign of the turbulent diffusion at the edge of fusion devices, Journal of Plasma Physics, Volume 89 (2023) no. 1 | DOI:10.1017/s0022377823000065
- Geodesic acoustic modes in magnetic confinement devices, Nuclear Fusion, Volume 62 (2022) no. 1, p. 013001 | DOI:10.1088/1741-4326/ac0dd1
- Extraction of quasi-coherent modes based on reflectometry data, Plasma Physics and Controlled Fusion, Volume 64 (2022) no. 10, p. 104007 | DOI:10.1088/1361-6587/ac828a
- Model-based electron density profile estimation and control, applied to ITER, Journal of Physics Communications, Volume 5 (2021) no. 11, p. 115015 | DOI:10.1088/2399-6528/ac3547
- Fluid Energy Cascade Rate and Kinetic Damping: New Insight from 3D Landau-fluid Simulations, The Astrophysical Journal, Volume 923 (2021) no. 1, p. 122 | DOI:10.3847/1538-4357/ac2bfb
- A First Approach Toward Bayesian Estimation of Turbulent Plasma Properties from Reflectometry, Fusion Science and Technology, Volume 69 (2016) no. 3, p. 586 | DOI:10.13182/fst15-192
- First Principle Transport Modeling in Fusion Plasmas: Critical Issues for ITER, From Hamiltonian Chaos to Complex Systems, Volume 5 (2013), p. 159 | DOI:10.1007/978-1-4614-6962-9_5
- Chaotic transport in Hamiltonian systems perturbed by a weak turbulent wave field, Physical Review E, Volume 84 (2011) no. 2 | DOI:10.1103/physreve.84.026204
- Origin of Lagrangian Intermittency in Drift-Wave Turbulence, Physical Review Letters, Volume 105 (2010) no. 14 | DOI:10.1103/physrevlett.105.145001
- Improved model for transport driven by drift modes in tokamaks, Physics of Plasmas, Volume 15 (2008) no. 1 | DOI:10.1063/1.2829762
- The role of coherent vorticity in turbulent transport in resistive drift-wave turbulence, Physics of Plasmas, Volume 15 (2008) no. 7 | DOI:10.1063/1.2956640
- Perturbative studies of turbulent transport in fusion plasmas, Comptes Rendus. Physique, Volume 7 (2006) no. 6, p. 634 | DOI:10.1016/j.crhy.2006.06.004
Cité par 14 documents. Sources : Crossref
Commentaires - Politique