Comptes Rendus
The dimensionless scaling of ELMy H-mode confinement
[Principe de similitude en mode H]
Comptes Rendus. Physique, Volume 7 (2006) no. 6, pp. 584-591.

Cet article décrit l'utilisation de lois d'échelles adimensionnelles pour l'étude du confinement de l'énergie dans les plasmas de tokamak en Mode-H et en présence de modes localisés de bord. Cette revue est centrée sur les expériences dédiées au principe de similitude, et représente le résultat d'une collaboration internationale très active sur le sujet. Les expériences sur tokamak ont montré la validité d'un principe de similitude appliquée aux plasmas magnétisés. Elles ont aussi fourni des réponses aux questions portant sur les lois d'échelle de longueur de corrélation de la turbulence, la nature électrostatique ou électromagnétique des fluctuations, et les effets des collisions sur le transport. Ces études ont abouti à une loi d'échelle qui a permis de dimensionner la prochaine génération de machines, dont ITER, et suggèrent la possibilité d'atteindre des régimes de plasmas à forte pression avec un bon confinement.

This article describes the use of dimensionless analysis in the study of energy confinement in ELMy H-mode tokamak plasmas, with a focus on the use of dedicated dimensionless parameter experiments. This work has involved a strong collaboration between many machines and countries. The experiments have demonstrated that such analysis is indeed valid, and have given important information on the scaling of the characteristic turbulent length, the separation of electrostatic and electromagnetic transport regimes, and the effects of collisionality on plasma transport. They have also provided a method for scaling existing experiments to next step machines, such as ITER, and have suggested the possibility of enhanced performance at high normalised pressure.

Publié le :
DOI : 10.1016/j.crhy.2006.06.003
Keywords: Tokamak plasmas, ELMy H-mode
Mot clés : Plasmas de tokamak, Mode-H

Darren C. McDonald 1

1 EURATOM–UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK
@article{CRPHYS_2006__7_6_584_0,
     author = {Darren C. McDonald},
     title = {The dimensionless scaling of {ELMy} {H-mode} confinement},
     journal = {Comptes Rendus. Physique},
     pages = {584--591},
     publisher = {Elsevier},
     volume = {7},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crhy.2006.06.003},
     language = {en},
}
TY  - JOUR
AU  - Darren C. McDonald
TI  - The dimensionless scaling of ELMy H-mode confinement
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 584
EP  - 591
VL  - 7
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.06.003
LA  - en
ID  - CRPHYS_2006__7_6_584_0
ER  - 
%0 Journal Article
%A Darren C. McDonald
%T The dimensionless scaling of ELMy H-mode confinement
%J Comptes Rendus. Physique
%D 2006
%P 584-591
%V 7
%N 6
%I Elsevier
%R 10.1016/j.crhy.2006.06.003
%G en
%F CRPHYS_2006__7_6_584_0
Darren C. McDonald. The dimensionless scaling of ELMy H-mode confinement. Comptes Rendus. Physique, Volume 7 (2006) no. 6, pp. 584-591. doi : 10.1016/j.crhy.2006.06.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.06.003/

[1] B.B. Kadomtsev Sov. J. Plasma Phys., 1 (1975), p. 295

[2] J.W. Connor; J.B. Taylor Nucl. Fusion, 17 (1977), p. 1047

[3] R.J. Goldston; D.C. McCune; H.H. Towner et al. J. Comput. Phys., 43 (1981), p. 61

[4] R.V. Budny; M.G. Bell; A.C. Janos et al. Nucl. Fusion, 35 (1995), p. 1497

[5] C.C. Petty; T.C. Luce; D.R. Baker et al. Phys. Plasmas, 5 (1998), p. 1695

[6] T.C. Luce; C.C. Petty; J.G. Cordey et al. Nucl. Fusion, 42 (2002), p. 1193

[7] K. Thomsen, et al., Confinement identity experiments in ASDEX Upgrade and JET, in: Proc. 25th EPS Conf. on Contr. Fusion and Plasma Physics, Prague, 1998, p. 468

[8] J.P. Christiansen et al. Experimental tests of confinement scale invariance on JET, DIIID, ASDEX upgrade and CMOD, Proc. 17th Int. Conf. Yokohama, 1998, Fusion Energy, IAEA, Vienna, 2001 (CD-ROM file EXP2/02)

[9] M. Greenwald Plasma Phys. Contr. Fusion, 44 (2002), p. R27

[10] C.C. Petty; T.C. Luce; J.G. Cordey; D.C. McDonald; R.V. Budny Plasma Phys. Contr. Fusion, 46 (2004), p. A207

[11] H. Leggate, et al., The significance of the dimensionless collisionality and the Greenwald fraction in the scaling of confinement, Nucl. Fusion, submitted for publication

[12] X. Garbet; R.E. Waltz Phys. Plasmas, 3 (1996), p. 1898

[13] M. Ottaviani; G. Manfredi Phys. Plasmas, 6 (1999), p. 3267

[14] Z. Lin; S. Ethier; T.S. Hahm; W.M. Tang Phys. Rev. Lett., 88 (2002), p. 195004

[15] J. Candy; R.E. Waltz Phys. Rev. Lett., 91 (2003), p. 045001

[16] R.E. Waltz; J.C. DeBoo; M.N. Rosenbluth Phys. Rev. Lett., 65 (1990), p. 2390

[17] J.P. Christiansen Nucl. Fusion, 30 (1990), p. 1183

[18] F.W. Perkins; W. Barnes Cris; D.W. Johnson et al. Phys. Fluids B, 5 (1993), p. 477

[19] U. Stroth; G. Kühner; H. Maassberg; H. Ringler Phys. Rev. Lett., 70 (1993), p. 936

[20] T.C. Jernigan; T.S. Bigelow; R.J. Colchin et al. Phys. Plasmas, 2 (1995), p. 2435

[21] C.C. Petty; T.C. Luce; R.I. Pinsker et al. Phys. Rev. Lett., 74 (1995), p. 1763

[22] C.C. Petty; T.C. Luce; K.H. Burrell et al. Phys. Plasmas, 2 (1995), p. 2342

[23] J.G. Cordey; JET Team Energy confinement and H-mode power threshold scaling in JET with ITER dimensionless parameters, Proc. 16th Int. Conf., Montréal, Canada, 1996, Fusion Energy, vol. 1, IAEA, Vienna, 1997, p. 603

[24] F. Ryter et al. Confinement and transport studies in ASDEX upgrade, Proc. 16th Int. Conf., Montréal, Canada, 1996, Fusion Energy, vol. 1, IAEA, Vienna, 1997, p. 625

[25] M. Greenwald; J. Schachter; W. Dorland et al. Plasma Phys. Contr. Fusion, 40 (1998), p. 789

[26] H. Shirai; T. Takizuka; Y. Koide; O. Naito; M. Sato; Y. Kamada; T. Fukuda Plasma Phys. Contr. Fusion, 42 (2000), p. 1193

[27] G.R. McKee; C.C. Petty; R.E. Waltz; C. Fenzi et al. Nucl. Fusion, 41 (2001), p. 1235

[28] H. Hennequin; R. Sabot; C. Honoré et al. Plasma Phys. Contr. Fusion, 46 (2004), p. B121

[29] ITER Physics Basis Nucl. Fusion, 39 (1999), p. 2175

[30] R.E. Waltz; G.M. Staebler; W. Dorland; G.W. Hammett; M. Kotschenreuther; J.A. Konings Phys. Plasmas, 4 (1997), p. 2482

[31] Z. Chang et al. Nucl. Fusion, 30 (1990), p. 219

[32] Z. Chang; E.D. Fredrickson; J.D. Callen et al. Nucl. Fusion, 34 (1994), p. 1309

[33] J.P. Christiansen; J.G. Cordey Nucl. Fusion, 38 (1998), p. 1757

[34] D.C. McDonald; J.G. Cordey; C.C. Petty et al. Plasma Phys. Contr. Fusion, 46 (2004), p. A215

[35] C.C. Petty; T.C. Luce; J.C. DeBoo; R.E. Waltz; D.R. Baker; M.R. Wade Nucl. Fusion, 38 (1998), p. 1183

[36] C.C. Petty; T.C. Luce; D.C. McDonald et al. Phys. Plasmas, 11 (2004), p. 2514

[37] H. Urano; T. Takizuka; H. Takenaga; N. Oyama; Y. Miura; Y. Kamada Confinement degradation with beta for ELMy H-mode plasmas in JT-60U tokamak, Nucl. Fusion, Volume 46 (2006) no. 8, p. 781

[38] T. Takizuka; H. Urano; H. Takenaga; N. Oyama Origin of the various beta dependence of ELMy H-mode confinement properties, Plasma Phys. Contr. Fusion, Volume 48 (2006) no. 6, p. 799

[39] D.C. McDonald, et al., Particle and energy transport in dedicated ρ, β and ν scans in JET ELMy H-modes, in: Proc. 20th Int. Conf. Vilamoura, Portugal, CD-Rom (2004) EX/6-6

[40] C. Angioni; A.G. Peeters; F. Jenko; T. Dannert Phys. Plasmas, 12 (2005), p. 112310

[41] G.L. Falchetto; O. Ottaviani Phys. Rev. Lett., 92 (2004), p. 025002

[42] C.C. Petty; T.C. Luce Phys. Plasmas, 6 (1999), p. 909

[43] M. Valovic et al. Energy confinement of ELMy H-mode plasmas on COMPASS-D tokamak with ECR heating, Maastricht, 1999, ECA (1999), p. 149

[44] M. Valovic; H. Meyer; R. Akers et al. Nucl. Fusion, 45 (2005), p. 942

[45] T.C. Luce et al. Effects of cross-section shape on L-mode and H-mode energy transport, Prague, ECA (1998), p. 1377

[46] K. Itami Plasma Phys. Contr. Fusion, 37 (1995), p. A255

[47] G. Saibene; L.D. Horton; R. Sartori et al. Nucl. Fusion, 39 (1999), p. 1133

[48] A. Pochelon; T.P. Goodman; M. Henderson et al. Nucl. Fusion, 39 (1999), p. 1807

[49] J. Stober; H. Zohm; O. Gruber et al. Plasma Phys. Contr. Fusion, 43 (2001), p. A39

[50] J.G. Cordey; D.C. McDonald; K. Borrass et al. Plasma Phys. Contr. Fusion, 44 (2002), p. 1929

[51] C.C. Petty Phys. Rev. Lett., 83 (1999), p. 3661

[52] E. Asp; J. Weiland; X. Garbet; P. Mantica; V. Parail; W. Suttrop; EFDA–JET contributors Plasma Phys. Contr. Fusion, 47 (2005), p. 505

[53] M. Murakami et al. London, UK, Plasma Phys. Contr. Nucl. Fusion Res., vol. 1, IAEA, Vienna (1985), p. 87

[54] O. Gehre; O. Gruber; H.D. Murmann et al. Phys. Rev. Lett., 60 (1988), p. 1502

[55] K. Ida et al. Phys. Rev. Lett., 68 (1992), p. 2182

[56] Y. Miura; K. Shinohara; N. Suzuki; K. Ida Plasma Phys. Contr. Fusion, 40 (1998), p. 799

[57] C.C. Petty; M.R. Wade; J.E. Kinsey; D.R. Baker; T.C. Luce Phys. Plasmas, 9 (2002), p. 128

[58] G.F. Counsell; R.J. Akers; L.C. Appel et al. Nucl. Fusion, 45 (2005), p. S157

[59] J.G. Cordey et al. Nucl. Fusion, 39 (1999), p. 1763

[60] J.G. Cordey et al. Plasma Phys. Contr. Fusion, 42 (2000), p. A127

[61] D.C. McDonald; J.G. Cordey; E. Righi et al. Plasma Phys. Contr. Fusion, 46 (2004), p. 519

[62] J.G. Cordey; K. Thomsen; A. Chudnovskiy et al. Nucl. Fusion, 45 (2005), p. 1078

Cité par Sources :

Commentaires - Politique