Comptes Rendus
Propagation channel models for mobile communication
[Modèles des canaux de propagation des systèmes de communication mobile]
Comptes Rendus. Physique, Volume 7 (2006) no. 7, pp. 703-714.

Les caractéristiques du canal de propagation impactent le développement des systèmes de communication radio mobile. Lors de la conception, la connaissance des caractéristiques du canal permet de déterminer l'interface radio la mieux adaptée (modulations, codage, type d'accès…). Les modèles de canaux large bande permettent alors d'évaluer et de comparer différentes interfaces radio candidates. En phase de déploiement réel, les modèles de prévision fournissent de précieuses données pour l'optimisation de l'architecture et du paramétrage du réseau radio. Cet article a pour but de rappeler brièvement les principales techniques de caractérisation et les méthodes utilisées pour modéliser le canal de propagation.

Propagation channel properties influence the development of wireless communication systems. During system design, channel properties are required to choose the suitable air interface (modulation, coding and access scheme). Comparisons and assessment of different solutions are performed using wideband propagation channel models. During network planning, prediction channel models provide valuable inputs to optimize network parameters. This article aims to present a short overview of these different propagation channel models.

Publié le :
DOI : 10.1016/j.crhy.2006.07.002
Keywords: Propagation, Wideband, Channel model, Measurement, MIMO
Mot clés : Propagation, Large bande, Modèle, Mesure, MIMO

Patrice Pajusco 1

1 France Telecom, Division R&D, 6 avenue des Usines, BP382, 90007 Belfort cedex, France
@article{CRPHYS_2006__7_7_703_0,
     author = {Patrice Pajusco},
     title = {Propagation channel models for mobile communication},
     journal = {Comptes Rendus. Physique},
     pages = {703--714},
     publisher = {Elsevier},
     volume = {7},
     number = {7},
     year = {2006},
     doi = {10.1016/j.crhy.2006.07.002},
     language = {en},
}
TY  - JOUR
AU  - Patrice Pajusco
TI  - Propagation channel models for mobile communication
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 703
EP  - 714
VL  - 7
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.07.002
LA  - en
ID  - CRPHYS_2006__7_7_703_0
ER  - 
%0 Journal Article
%A Patrice Pajusco
%T Propagation channel models for mobile communication
%J Comptes Rendus. Physique
%D 2006
%P 703-714
%V 7
%N 7
%I Elsevier
%R 10.1016/j.crhy.2006.07.002
%G en
%F CRPHYS_2006__7_7_703_0
Patrice Pajusco. Propagation channel models for mobile communication. Comptes Rendus. Physique, Volume 7 (2006) no. 7, pp. 703-714. doi : 10.1016/j.crhy.2006.07.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.07.002/

[1] J.M. Conrat, P. Pajusco, Clusterization of the MIMO propagation channel in urban macrocells at 2 GHz, in: ECWT, Paris, 2005

[2] A. Saleh; R. Valenzuela A statistical model for indoor multipath propagation, IEEE Journal on Selected Areas in Communications, Volume 5 (1987), p. 128

[3] A.F. Molisch, K. Balakrishnan, C. Chong, S. Emami, A. Fort, J. Keredal, J. Kunisch, H. Schantz, U. Schuster, K. Siwiak, IEEE 802.15.4a channel model—final report, presented at IEEE P802.15 Working Group for WPANs, Technical Report IEEE P802.15-04/0662r1-SG4a, 2004

[4] COST207, Digital land mobile radio communications, final report, Luxembourg, 1989

[5] ETSI/TC SMG, Recommendation GSM 05:05: Radio transmission and reception, October 1993

[6] Recommendation ITU-R M. 122, Guidelines for evaluation of radio transmission technologies for IMT-2000, 1997

[7] 3GPP, UMTS deployment aspects, TR 25.943, 2000

[8] J. Medbo, P. Schramm, Channel models for HIPERLAN/2 in different indoor scenarios, ETSI BRAN 3ERI085B, 1998

[9] V. Erceg, K.V.S. Hari, M.S. Smith, D.S. Baum, K.P. Sheikh, C. Tappenden, J.M. Costa, C. Bushue, A. Sarajedini, R. Schwartz, D. Branlund, T. Kaitz, D. Trinkwon, Channel models for fixed wireless applications, IEEE 802.16 Broadband Wireless Access Working Group 2001-07-16, 2001

[10] V. Erceg, L. Schumacher, P. Kyritsi, A. Molish, D.S. Baum, et al., TGn channel models, IEEE 802.11-03/940r9, 2004

[11] 3GPP, Spatial channel model for Multiple Input Multiple Output, TR 25.996 V6.1.0, 2003

[12] I. 802.20-PD-08, IEEE 802.20 channel model (V 1.0), 2005

[13] T. Okumura; E. Ohmor; K. Fukada Field strength and its variability in VHF and UHF land mobile service, Review Electrical Communication Laboratory (1968), pp. 825-873

[14] M. Hata Empirical formula for propagation loss in land mobile radio service, IEEE Transactions on Vehicular Technology (1980), pp. 317-325

[15] J. Walfisch; H. Bertoni A theoretical model of UHF propagation in urban environment, IEEE Transactions on Antennas and Propagation, Volume 36 (1988), pp. 1788-1796

[16] COST231, Digital mobile radio towards future generation systems, final report, 1999

[17] J. Wiart, Microcell modelling when base station is below roof tops, in: IEEE Vehicular Technology Conference, 1994, pp. 384–388

[18] J.M. Keenan; A.J. Motley Radio coverage in building, British Telecom Technology Journal, Volume 8 (1990), pp. 19-24

[19] J.M. Gorce, E. Jullo, K. Runser, An adaptive multi-resolution algorithm for 2D simulations of indoor propagation, 2003

[20] A. Eisenblätter, H.F. Geerdes, D. Junglas, T. Koch, T. Kürner, A. Martin, Final report on automatic planning and optimisation, IST-2000-28088 MOMENTUM, 2003

[21] K. Rizk; J.F. Wagen; F. Gardiol Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments, IEEE Transactions on Vehicular Technology, Volume 46 (1997), p. 508

[22] J.P. Rossi, J.C. Bic, A.J. Levy, Y. Gabillet, M. Rosen, A ray launching method for radio-mobile propagation in urban area, in: IEEE Antenna and Propagation Symposium, London (ONT) Canada, 1991

[23] D. Haumont, O. Mäkinen, S. Nirenstein, A low dimensional framework for exact polygon-to-polygon occlusion queries, in: Eurographics Symposium on Rendering, 2005

[24] S. Reynaud, Y. Cocheril, R. Vauzelle, L. Aveneau, A. Reineix, Influence of an accurate environment description for the indoor propagation channel modelling, in: European Conference on Wireless Technology, Paris, October 2005

[25] K. Yee Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, Volume 14 (1966), pp. 302-307

[26] J.P. Berenger A perfectly matched layer for the absorption of electromagnetic waves, Computational Physics, Volume 114 (1994), pp. 185-200

[27] Q.H. Liu, The Pseudospectral Time-Domain (PSTD) method: A new algorithm for solution of Maxwell's equation, in: Antennas and Propagation Society International Symposium, Montreal, Canada, 1997

Cité par Sources :

Commentaires - Politique