[Modélisation statistique du canal de propagation Ultra Large Bande par l'analyse de mesures expérimentales]
Afin de développer les futurs systèmes de communication Ultra Large Bande (ULB), une modélisation réaliste du canal de propagation est nécessaire. Cet article présente une étude expérimentale du canal radio ULB, basée sur une campagne de sondage complète réalisée en environnement intérieur de bureau. Nous présentons les caractéristiques principales du canal ULB en termes de pertes par propagation, puis de paramètres large bande, comme la dispersion des retards et la pente du profil puissance-retard. À partir de ces analyses, nous proposons un modèle de canal statistique qui permet de reproduire les effets du canal ULB sur la bande de fréquences 3,1–10,6 GHz.
For the development of future Ultra Wide Band (UWB) communication systems, realistic modeling of the propagation channel is necessary. This article presents an experimental study of the UWB radio channel, based on an extensive sounding campaign covering the indoor office environment. We consider the main characteristics of the UWB channel by studying the propagation loss and wide band parameters, such as the delay spread and the power delay profile decay. From this analysis, we propose a statistical channel model reproducing the UWB channel effects over the frequency bandwidth 3.1–10.6 GHz.
Mot clés : Ultra Large Bande, Propagation radioélectrique, Sondage de canal, Caractérisation, Modélisation
Pascal Pagani 1 ; Patrice Pajusco 2
@article{CRPHYS_2006__7_7_762_0, author = {Pascal Pagani and Patrice Pajusco}, title = {Statistical modeling of the ultra wide band propagation channel through the analysis of experimental measurements}, journal = {Comptes Rendus. Physique}, pages = {762--773}, publisher = {Elsevier}, volume = {7}, number = {7}, year = {2006}, doi = {10.1016/j.crhy.2006.07.008}, language = {en}, }
TY - JOUR AU - Pascal Pagani AU - Patrice Pajusco TI - Statistical modeling of the ultra wide band propagation channel through the analysis of experimental measurements JO - Comptes Rendus. Physique PY - 2006 SP - 762 EP - 773 VL - 7 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2006.07.008 LA - en ID - CRPHYS_2006__7_7_762_0 ER -
%0 Journal Article %A Pascal Pagani %A Patrice Pajusco %T Statistical modeling of the ultra wide band propagation channel through the analysis of experimental measurements %J Comptes Rendus. Physique %D 2006 %P 762-773 %V 7 %N 7 %I Elsevier %R 10.1016/j.crhy.2006.07.008 %G en %F CRPHYS_2006__7_7_762_0
Pascal Pagani; Patrice Pajusco. Statistical modeling of the ultra wide band propagation channel through the analysis of experimental measurements. Comptes Rendus. Physique, Volume 7 (2006) no. 7, pp. 762-773. doi : 10.1016/j.crhy.2006.07.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.07.008/
[1] Ultra-wideband communications: an idea whose time has come, IEEE Signal Processing Magazine, Volume 21 ( November 2004 ) no. 6, pp. 26-54
[2] FCC, First report and order, revision of Part 15 of the Commission's rules regarding ultra-wideband transmission systems, FCC, Tech. Rep. ET Docket 98-153, April 2002
[3] Ultrawideband propagation channels—theory, measurement, and modeling, IEEE Transactions on Vehicular Technology, Volume 54 ( September 2005 ) no. 5, pp. 1528-1545
[4] J. Foerster, Channel modeling sub-committee report final, IEEE P802.15 Working Group for WPANs, Tech. Rep. IEEE P802.15- 02/490r1-SG3a, February 2003
[5] A.F. Molisch, K. Balakrishnan, C.C. Chong, et al., IEEE 802.15.4a channel model—final report, IEEE 802.15 Working Group for WPANs, Tech. Rep. IEEE P802.15-04/0662, November 2004
[6] J. Kunisch, J. Pamp, Measurement results and modelling aspects for the UWB radio channel, in: IEEE Conference on Ultra Wide Band Systems and Technologies, Baltimore, MD, USA, May 2002, pp. 19–23
[7] R.M. Buehrer, W.A. Davis, A. Safaai-Jazi, et al., Characterization of the ultra-wideband channel, in: IEEE Conference on Ultra Wide Band Systems and Technologies, Reston, VA, USA, November 2003, pp. 26–31
[8] A. Alvarez, G. Valera, M. Lobeira, et al., New channel impulse response model for UWB indoor system simulations, in: IEEE Vehicular Technology Conference, VTC Spring, vol. 1, Seoul, Korea, April 2003, pp. 1–5
[9] D. Cassioli, A. Durantini, Statistical characterization of UWB indoor propagation channels based on extensive measurement campaigns, in: International Symposium on Wireless Personal Multimedia Communications, vol. 1, Abano Terme, Italy, September 2004, pp. 236–240
[10] J. Karedal, S. Wyne, P. Almers, et al., UWB channel measurements in an industrial environment, in: IEEE Global Telecommunications Conference, vol. 6, Dallas, TX, USA, November 2004, pp. 3511–3516
[11] K. Haneda, J. Takada, T. Kobayashi, On the cluster properties in UWB spatio-temporal residential measurement, in: COST 273 Workshop, Bologna, Italy, January 2005
[12] P. Pagani, Caractérisation et modélisation du canal de propagation radio en contexte Ultra Large Bande, Ph.D. dissertation, Institut National des Sciences Appliquées de Rennes, France, November 2005 (in French)
[13] ITU, Propagation prediction methods for the planning of ultra-wideband applications in the frequency range 1 GHz to 10 GHz (draft recommendation), International Telecommunications Union, Tech. Rep. 3K/TEMP/18-E, October 2004
[14] S.S. Ghassemzadeh, L.J. Greenstein, A. Kavcic, et al., UWB indoor delay profile model for residential and commercial environments, in: IEEE Vehicular Technology Conference, VTC Fall, vol. 5, Orlando, FL, USA, October 2003, pp. 3120–3125
[15] A statistical model for indoor multipath propagation, IEEE Journal on Selected Areas in Communications, Volume 5 ( February 1987 ) no. 2, pp. 128-137
[16] J. Karedal, S. Wyne, P. Almers, et al., Statistical analysis of the UWB channel in an industrial environment, in: IEEE Vehicular Technology Conference, VTC Fall, vol. 1, Los Angeles, CA, USA, September 2004, pp. 81–85
[17] The ultra-wide bandwidth indoor channel: from statistical model to simulations, IEEE Journal on Selected Areas in Communications, Volume 20 ( August 2002 ) no. 6, pp. 1247-1257
[18] J. Kunisch, J. Pamp, An ultra-wideband space-variant multipath indoor radio channel model, in: IEEE Conference on Ultra Wide Band Systems and Technologies, Reston VA, USA, November 2003, pp. 290–294
[19] S.M. Yano, Investigating the ultra-wideband indoor wireless channel, in: IEEE Vehicular Technology Conference, VTC Spring, vol. 3, Birmingham, AL, USA, May 2002, pp. 1200–1204
[20] Evaluation of an ultra-wide-band propagation channel, IEEE Transactions on Antennas and Propagation, Volume 50 ( May 2002 ) no. 5, pp. 561-570
[21] B. Denis, J. Keignart, Post-processing framework for enhanced UWB channel modeling from band-limited measurements, in: IEEE Conference on Ultra Wide Band Systems and Technologies, Reston, VA, USA, November 2003, pp. 260–264
[22] Performance comparison of three different estimators for the Nakagami m parameter using Monte Carlo simulation, IEEE Communications Letters, Volume 4 ( April 2000 ) no. 4, pp. 119-121
[23] U. Schuster, Indoor UWB channel measurements from 2 GHz to 8 GHz, IEEE 802.15 Working Group for Wireless Personal Area Networks (WPANs), Tech. Rep. IEEE 802.15-04/447, September 2004
[24] On the use of windows for harmonic analysis with the discrete Fourier transform, Proceedings of the IEEE, Volume 66 ( January 1978 ) no. 1, pp. 51-83
Cité par Sources :
Commentaires - Politique