[Ordonnanceur opportuniste à base de radio cognitive]
Dans les approches cognitives traditionnelles basées sur la recherche d'interférence, une bande de communication sur laquelle est détectée de l'interférence est éliminée sans prendre en compte les caractéristiques temporelles de cette dernière. L'objectif de ce papier est d'alerter la communauté scientifique sur l'intérêt de pendre en compte les caractéristiques temporelles de l'interférence. Ainsi le terminal à radio cognitive pourra gérer de façon opportuniste l'interférence présente dans les réseaux. Dans ce but, une modélisation mathématique du comportement temporel de l'interférence est réalisée lorsque ces signaux obéissent à une loi de distribution log-normale. Dans le cas particulier d'une microcellule (hot-spots) faisant partie d'une macro cellule et communicant toutes deux sur la même bande de fréquence, des paramètres clés tel que le débit sont déterminés.
Traditional cognitive approaches based on interference scanning discard a certain communication band once interference is detected, irrespective of the temporal characteristics of the interference. The aim of this article is to alert the community that interference exhibits temporal fluctuations, which can be exploited by a cognitive radio in an opportunistic manner. To this end, we present some mathematical approaches that describe the temporal behaviour of interference signals obeying a lognormal shadowing distribution. We derive some key quantities, such as throughput, for an example hierarchical cell structure configuration of a microcell hotspot being operated within a macrocell using the same frequency band.
Mot clés : Radio opportuniste, Radio cognitive, Structure hiérarchique, CDMA, Débit
Mischa Dohler 1 ; Seyed A. Ghorashi 2 ; Mohamed Ghozzi 1 ; Marylin Arndt 1 ; Fatin Said 2 ; A. Hamid Aghvami 2
@article{CRPHYS_2006__7_7_805_0, author = {Mischa Dohler and Seyed A. Ghorashi and Mohamed Ghozzi and Marylin Arndt and Fatin Said and A. Hamid Aghvami}, title = {Opportunistic scheduling using cognitive radio}, journal = {Comptes Rendus. Physique}, pages = {805--815}, publisher = {Elsevier}, volume = {7}, number = {7}, year = {2006}, doi = {10.1016/j.crhy.2006.07.004}, language = {en}, }
TY - JOUR AU - Mischa Dohler AU - Seyed A. Ghorashi AU - Mohamed Ghozzi AU - Marylin Arndt AU - Fatin Said AU - A. Hamid Aghvami TI - Opportunistic scheduling using cognitive radio JO - Comptes Rendus. Physique PY - 2006 SP - 805 EP - 815 VL - 7 IS - 7 PB - Elsevier DO - 10.1016/j.crhy.2006.07.004 LA - en ID - CRPHYS_2006__7_7_805_0 ER -
%0 Journal Article %A Mischa Dohler %A Seyed A. Ghorashi %A Mohamed Ghozzi %A Marylin Arndt %A Fatin Said %A A. Hamid Aghvami %T Opportunistic scheduling using cognitive radio %J Comptes Rendus. Physique %D 2006 %P 805-815 %V 7 %N 7 %I Elsevier %R 10.1016/j.crhy.2006.07.004 %G en %F CRPHYS_2006__7_7_805_0
Mischa Dohler; Seyed A. Ghorashi; Mohamed Ghozzi; Marylin Arndt; Fatin Said; A. Hamid Aghvami. Opportunistic scheduling using cognitive radio. Comptes Rendus. Physique, Volume 7 (2006) no. 7, pp. 805-815. doi : 10.1016/j.crhy.2006.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.07.004/
[1] Cognitive radio: Brain-empowered wireless communications, IEEE J. Select. Areas Commun., Volume 23 ( February 2005 ) no. 2, pp. 201-220
[2] et al. Cognitive radio: Making software radios more personal, IEEE Pers. Commun., Volume 6 ( August 1999 ) no. 4, pp. 13-18
[3] Performance of a CDMA based HCS network with hybrid speed/overflow sensitive handover strategy, IEE Proc. Commun., Volume 150 ( August 2003 ) no. 4, pp. 293-297
[4] Congestion relief on power-controlled CDMA networks, IEEE J. Select. Areas Commun., Volume 14 ( December 1996 ), pp. 1758-1761
[5] Integrating data traffic into a CDMA cellular voice system, ACM Wireless Networks, Volume 1 (1995) no. 4, pp. 389-402
[6] C.-L. I, K.K. Sabnani, Variable spreading gain CDMA with adaptive control for true packet switching wireless network, in: Proc. IEEE ICC, Seattle, WA, 1995, pp. 1060–1064
[7] Dynamic spreading gain control in multiservice CDMA networks, IEEE J. Select. Areas Commun., Volume 17 ( May 1999 ) no. 5, pp. 918-927
[8] A scheme for throughout maximization in a dual-class CDMA system, IEEE J. Select. Areas Commun., Volume 16 ( August 1998 ), pp. 830-844
[9] CDMA/HDR: A bandwidth-efficient high-speed wireless data service for nomadic users, IEEE Commun. Mag., Volume 38 (2000), pp. 70-77
[10] Joint power control and intracell scheduling of DS-CDMA non-real time data, IEEE J. Select. Areas Commun., Volume 19 (2001), pp. 1860-1870
[11] Sung-hyuk Kwon, Seong-Lyun Kim, R. Jantti, Downlink intercell coordination for DS-CDMA non-real time data, in: IEEE Veh. Tech. Conf. (VTC 2003-Spring), vol. 3, April 2003, pp. 1689–1693
[12] Capacity analysis of macro/microcellular CDMA with power ratio control and tilted antenna, IEEE Trans. Veh. Technol., Volume 49 ( January 2000 ) no. 1, pp. 34-42
[13] Performance study for a microcell hot-spot embedded in CDMA macrocell systems, IEEE Trans. Veh. Technol., Volume 48 ( January 1999 ) no. 1, pp. 47-59
[14] Cheolin Joh, Keunyoung Kim, Youngnam Han, Performance of a microcell with optimal power allocation for multiple class traffic in hierarchically structured cellular CDMA systems, in: IEEE Veh. Tech. Conf. (VTC 2001-Spring), 2001, pp. 2818–2822
[15] S. Hamalainen, H. Lilja, J. Lokio, M. Leinonen, Performance of a CDMA based hierarchical cell structure network, in: 8th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 97), vol. 3, 1997, pp. 863–866
[16] A. Catovic, S. Tekinay, Projection multiuser detectors for hierarchical cell structures in CDMA cellular systems, in: IEEE Veh. Tech. Conf. (VTC 2001-Spring), vol. 3, 2001, pp. 1853–1857
[17] Mobile Communications Engineering, McGraw-Hill, New York, 1982 (Chapter 3)
[18] N.B. Mandayam, P. Chen, J.M. Holtzman, Minimum duration outage for cellular systems: A level crossing analysis, in: Proc. IEEE VTC, April 1996, pp. 879–883
[19] R. Steele, L. Hanzo, Mobile Radio Communications, second ed., May 1999
[20] Digital Communication over Fading Channels, John Wiley & Sons, Inc., New York, 2000
[21] CDMA: Principles of Spread Spectrum Communications, Addison–Wesley, 1992
[22] Capacity estimation of SIR-based power controlled CDMA cellular systems in presence of power control error, IEICE Trans. Commun., Volume E86-B ( September 2003 ) no. 9
[23] R. Vijayan, J.M. Holtzman, Foundations for level crossing analysis of handoff algorithms, in: ICC 93, vol. 2, May 1993, pp. 935–939
[24] ETSI: Universal Mobile Telecom. System (UMTS); Selection procedures for the choice of radio transmission of UMTS, UMTS technical report 30.03, v. 3.2.0, April 1998
[25] S.A. Ghorashi, E. Homayounvala, F. Said, A.H. Aghvami, Dynamic simulator for studying WCDMA based hierarchical cell structures, in: PIMRC 2001, vol. 1, September 2001, pp. 32–37
[26] Corrections to the path loss model for UMTS vehicular test environment, IEEE Trans. Veh. Technol., Volume 50 ( January 2001 ) no. 1, p. 331
[27] Performance of a CDMA based HCS network with hybrid speed/overflow sensitive handover strategy, IEE Proc. Commun., Volume 150 ( August 2003 ) no. 4, pp. 293-297
[28] S.A. Ghorashi, F. Said, A.H. Aghvami, Handover rate control in hierarchically structured cellular CDMA systems, in: PIMRC 2003, vol. 3, September 2003, pp. 2083–2087
Cité par Sources :
⁎ This work was partially supported by the EPSRC under grant GR/S62017/01.
Commentaires - Politique