Ce travail aborde l'étude du frittage du β phosphate tricalcique obtenu par voie sèche, en vue d'élaborer des matériaux denses. L'évolution de la densité du matériau fritté en fonction du temps et de la température, a été suivie. Le phosphate tricalcique présente une bonne aptitude au frittage dans le domaine de température 1200–1350 °C, ainsi des taux de densification de 92% ont pu être atteints à 1300 °C. A des températures supérieures à 1350 °C, la densification est entravée par le grossissement exagéré des grains et la formation de larges pores. La diffraction des rayons X montre en plus du β phosphate tricalcique, la présence de traces de la phase α du phosphate tricalcique et du phosphate tétracalcique. L'analyse par résonance magnétique nucléaire du solide 31P illustre la présence de trois types de site tétraédrique. L'analyse thermique différentielle montre que les deux transformations allotropiques du phosphate tricalcique se produisent respectivement à 1285 et 1475 °C.
This article investigates the sintering of β tricalcium phosphate obtained by solid state reaction, for elaboration of dense materials. The evolution of the sintered material density as a function to time and temperature has been followed. The tricalcium phosphate presents a good sinterability in the range 1200–1350 °C. Thus, a densification rate of about 92% was reached at 1300 °C. At temperature higher than 1350 °C, the densification was hindered by the grain growth and the formation of large pore. X-ray diffraction showed besides the β tricalcium phosphate, the presence of α phase traces of tricalcium phosphate and the tetracalcium phosphate. The analysis by nuclear magnetic resonance of the solid 31P illustrates the presence of three types of tetrahedral site. Differentially thermal analyse shows that two phase changes of the tricalcium phosphate occurred at 1285 and 1475 °C, respectively.
Accepté le :
Publié le :
Keywords: Tricalcium phosphate, Sintering, Microstructure, Densification, Allotropic transformation, Nuclear magnetic resonance of solid 31P
Foued Ben Ayed 1, 2 ; Kamel Chaari 1 ; Jamel Bouaziz 1 ; Khaled Bouzouita 3
@article{CRPHYS_2006__7_7_825_0, author = {Foued Ben Ayed and Kamel Chaari and Jamel Bouaziz and Khaled Bouzouita}, title = {Frittage du phosphate tricalcique}, journal = {Comptes Rendus. Physique}, pages = {825--835}, publisher = {Elsevier}, volume = {7}, number = {7}, year = {2006}, doi = {10.1016/j.crhy.2006.07.012}, language = {fr}, }
Foued Ben Ayed; Kamel Chaari; Jamel Bouaziz; Khaled Bouzouita. Frittage du phosphate tricalcique. Comptes Rendus. Physique, Towards reconfigurable and cognitive communications, Volume 7 (2006) no. 7, pp. 825-835. doi : 10.1016/j.crhy.2006.07.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.07.012/
[1] , Calcium Phosphates in Oral Biology and Medicine, vol. 5, Karger, New York, USA, 1991, p. 15
[2] , An Introduction to Bioceramics, vol. 1, World Scientific, Gainesville, USA, 1993, p. 154
[3] J. Mater. Sci.: Mat. Med., 6 (1995), p. 348
[4] J. Non-Cryst. Sol., 304 (2002), p. 286
[5] Key Engrg. Mater., 240 (2003), p. 23
[6] J. Am. Ceram. Soc., 12 (1992) no. 75, pp. 3401-3407
[7] J. Eur. Ceram. Soc., 18 (1998), p. 131
[8] Mater. Sci. Engrg., 11 (2000), p. 35
[9] A. Ben Cherifa, Thèse de spécialité, Université de Tunis, Tunisie, 1988
[10] Structure and Chemistry of the Apatite and Other Calcium Orthophosphates, Elsevier Science B.V., Amsterdam, 1994
[11] S. Somrani, Thèse de spécialité, Université de Tunis, Tunisie, 1990
[12] Yogokyokaiski, 10 (1983), pp. 473-475
[13] J. Am. Ceram. Soc., 81 (1998) no. 6, pp. 1421-1428
[14] Trends Biomater. Artif. Organs, 16 (2002) no. 1, pp. 15-17
[15] Matter. Chem. Phys., 80 (2003), pp. 269-277
[16] J. Amer. Chem. Soc., 60 (1938), p. 309
[17] M. Schmitt, Contribution à l'élaboration de nouveaux matériaux biphasés en phosphate de calcium, Thèse, Université de Nantes, France, 2000
[18] Key Engrg. Mater., 254–256 (2003)
[19] C. Benaqqa, Etude de la propagation sous critique de fissures dans les phosphates de calcium : cas de l'hydroxyapatite et du phosphate tricalcique, Thèse, INSA, Lyon, France, 2003
[20] Mater. Characterization, 52 (2004), pp. 301-307
[21] Mater. Lett., 49 (2001), pp. 83-85
[22] J. Solid State Chem., 175 (2003), pp. 272-277
[23] J. Polym. Sci., 30 (1992), p. 613
[24] Biomaterials, 23 (2002), pp. 909-914
- Preparation and characterization of bioceramic composites based on anorthite and β-TCP from dolomitic phosphate and kaolin rocks, Materials Chemistry and Physics, Volume 312 (2024), p. 128625 | DOI:10.1016/j.matchemphys.2023.128625
- Effect of the Magnesium Oxide Addition on the Mechanical Performance of Tricalcium Phosphate Bioceramic, Proceedings of the 2nd International Conference on Innovative Materials, Manufacturing, and Advanced Technologies, Volume 144 (2024), p. 126 | DOI:10.1007/978-3-031-42659-9_14
- Mechanical and Biological Properties of Tricalcium Phosphate–Magnesium Oxide Composites, JOM, Volume 74 (2022) no. 9, p. 3634 | DOI:10.1007/s11837-022-05414-w
- Effect of natural phosphate content on the growth kinetics of hydroxyapatite crystals grown from kaolin clay, Materials Chemistry and Physics, Volume 292 (2022), p. 126865 | DOI:10.1016/j.matchemphys.2022.126865
- Structural and Mechanical Properties of Porous Al2O3-Fap-TiO2 Composite as a Promising Material for Bone Implants, JOM, Volume 73 (2021) no. 8, p. 2431 | DOI:10.1007/s11837-021-04735-6
- Mechanical and tribological properties of the tricalcium phosphate - magnesium oxide composites, Materials Science and Engineering: C, Volume 96 (2019), p. 716 | DOI:10.1016/j.msec.2018.11.070
- Low cost MF ceramic support prepared from natural phosphate and titania: application for the filtration of Disperse Blue 79 azo dye solution, Desalination and Water Treatment, Volume 136 (2018), p. 433 | DOI:10.5004/dwt.2018.23238
- Sintering of the Tricalcium Phosphate-Titania-Magnesium Fluoride Composites, Sintering of Functional Materials (2018) | DOI:10.5772/intechopen.68501
- Elaboration and Characterization of Bioceramics from Natural Phosphate, Acta Physica Polonica A, Volume 131 (2017) no. 1, p. 117 | DOI:10.12693/aphyspola.131.117
- Preparation and characterization of anorthite and hydroxyapatite from Algerian kaolin and natural phosphate, Journal of Thermal Analysis and Calorimetry, Volume 126 (2016) no. 3, p. 1045 | DOI:10.1007/s10973-016-5655-8
- Combined numerical and experimental mechanical characterization of a calcium phosphate ceramic using modified Brazilian disc and SCB specimen, Materials Science and Engineering: A, Volume 670 (2016), p. 240 | DOI:10.1016/j.msea.2016.06.020
- Sintering and the mechanical properties of the tricalcium phosphate–titania composites, Journal of the Mechanical Behavior of Biomedical Materials, Volume 49 (2015), p. 129 | DOI:10.1016/j.jmbbm.2015.05.001
- The effect of adding magnesium oxide on the mechanical properties of the tricalcium phosphate-zirconia composites, Materials Chemistry and Physics, Volume 151 (2015), p. 50 | DOI:10.1016/j.matchemphys.2014.11.027
- Sintering and mechanical properties of the alumina–tricalcium phosphate–titania composites, Materials Science and Engineering: C, Volume 40 (2014), p. 92 | DOI:10.1016/j.msec.2014.03.036
- Synthesis and characterization of Al2O3/Zno nanocomposite by pressureless sintering, Powder Technology, Volume 264 (2014), p. 278 | DOI:10.1016/j.powtec.2014.05.038
- Influence of the sintering temperature on Young's modulus and the shear modulus of tricalcium phosphate – fluorapatite composites evaluated by ultrasound techniques, Materials Chemistry and Physics, Volume 141 (2013) no. 1, p. 289 | DOI:10.1016/j.matchemphys.2013.05.013
- Effect of fluorapatite additive on the mechanical properties of tricalcium phosphate-zirconia composites, IOP Conference Series: Materials Science and Engineering, Volume 28 (2012), p. 012029 | DOI:10.1088/1757-899x/28/1/012029
- Effect of Titania Additive on Structural and Mechanical Properties of Alumina–Fluorapatite Composites, Journal of Materials Science Technology, Volume 28 (2012) no. 12, p. 1130 | DOI:10.1016/s1005-0302(12)60182-0
- Sintering and mechanical properties of tricalcium phosphate–fluorapatite composites, Ceramics International, Volume 35 (2009) no. 5, p. 1909 | DOI:10.1016/j.ceramint.2008.10.030
- Mechanical properties of tricalcium phosphate-fluorapatite-alumina composites, Physics Procedia, Volume 2 (2009) no. 3, p. 1441 | DOI:10.1016/j.phpro.2009.11.114
- Sintering of tricalcium phosphate–fluorapatite composites by addition of alumina, Ceramics International, Volume 34 (2008) no. 8, p. 1885 | DOI:10.1016/j.ceramint.2007.07.017
- Sintering of tricalcium phosphate–fluorapatite composites with zirconia, Journal of the European Ceramic Society, Volume 28 (2008) no. 10, p. 1995 | DOI:10.1016/j.jeurceramsoc.2008.02.004
Cité par 22 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier