Le composite phosphate tricalcique–fluorapatite présente une bonne aptitude au frittage à 1300 °C. Ainsi, des taux de densification de 90% ont pu être atteints pour de fluorapatite. À 1300 °C, l'augmentation de la teneur de la fluorapatite dans le composite favorise la formation de la phase α du phosphate tricalcique. L'analyse par résonance magnétique nucléaire du solide 31P illustre la présence de trois types de sites tétraédriques pour le phosphate tricalcique, alors que la fluorapatite ne possède qu'un seul type de sites. Aux températures supérieures à 1300 °C, la densification est entravée par le grossissement exagéré des grains et la formation de larges pores.
The tricalcium phosphate–fluorapatite composite has a good aptitude to sintering at 1300 °C, so a densification rate of about 90% was reached with 33.16 wt% of fluorapatite. At 1300 °C, the increase of the content of fluorapatite in the composite favours the formation of the α tricalcium phosphate phase. The 31P MAS-NMR analysis reveals the presence of three tetrahedral P sites for the tricalcium phosphate, whereas the fluorapatite possesses only one. At temperatures higher than 1300 °C, the densification is hindered by grain growth and the formation of large pores.
Accepté le :
Publié le :
Keywords: Tricalcium phosphate, Fluorapatite, Composite, Sintering, Densification, Microstructure, 31P MAS-NMR
Foued Ben Ayed 1, 2 ; Jamel Bouaziz 1
@article{CRPHYS_2007__8_1_101_0, author = {Foued Ben Ayed and Jamel Bouaziz}, title = {\'Elaboration et caract\'erisation d'un biomat\'eriau \`a base de phosphates de calcium}, journal = {Comptes Rendus. Physique}, pages = {101--108}, publisher = {Elsevier}, volume = {8}, number = {1}, year = {2007}, doi = {10.1016/j.crhy.2006.10.017}, language = {fr}, }
Foued Ben Ayed; Jamel Bouaziz. Élaboration et caractérisation d'un biomatériau à base de phosphates de calcium. Comptes Rendus. Physique, Volume 8 (2007) no. 1, pp. 101-108. doi : 10.1016/j.crhy.2006.10.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.017/
[1] High Tech. Ceram. (1987), pp. 31-41
[2] , Calcium Phosphates in Oral Biology and Medicine, vol. 5, Karger, New York, 1991, p. 15
[3] J. Am. Ceram. Soc., 74 (1991) no. 7, pp. 1487-1510
[4] J. Am. Ceram. Soc., 75 (1992) no. 12, pp. 3401-3407
[5] J. Mater. Sci.: Mater. Med. (1993), p. 292
[6] An Introduction to Bioceramics, vol. 1, World Scientific, Gainesville, USA, 1993, p. 154
[7] Structure and Chemistry of the Apatite and Other Calcium Orthophosphates, Elsevier Science B.V., Amsterdam, 1994
[8] J. Mater. Sci.: Mater. Med., 6 (1995), p. 348
[9] Biomaterials, 20 (1999), pp. 1263-1267
[10] J. Eur. Ceram. Soc., 20 (2000), pp. 2377-2387
[11] J. Eur. Ceram. Soc., 20 (2000) no. 8, pp. 1069-1076
[12] Mater. Lett., 49 (2001), pp. 83-85
[13] Ann. Chim. Sci. Mater., 26 (2001) no. 6, pp. 75-86
[14] J. Alloys Compd., 322 (2001) no. 1–2, pp. 238-245
[15] Biomaterials, 23 (2002), pp. 909-914
[16] J. Non-Cryst. Solids, 304 (2002), p. 286
[17] Trends Biomater. Artif. Organs, 16 (2002) no. 1, pp. 15-17
[18] J. Biomater., 23 (2002), pp. 1073-1080
[19] J. Eur. Ceram. Soc., 23 (2003), pp. 229-241
[20] Key Eng. Mater., 240 (2003), p. 23
[21] Mater. Chem. Phys., 80 (2003), pp. 269-277
[22] Key Eng. Mater., 240 (2003), pp. 254-256
[23] Mater. Charact., 52 (2004), pp. 301-307
[24] Ann. Chim. Sci. Mater., 31 (2006) no. 4, pp. 393-406
[25] J. Eur. Ceram. Soc., 18 (1998), p. 131
[26] Mater. Sci. Eng., 11 (2000), p. 35
[27] M. Schmitt, thèse, université de Nantes, France, 2000
[28] Biomaterials, 1 (1980), p. 908
[29] C. R. Physique, 7 (2006) no. 7, pp. 825-835
[30] J. Solid-State Chem., 175 (2003), pp. 272-277
[31] J. Polym. Sci., 30 (1992), p. 613
Cité par Sources :
Commentaires - Politique