Le composite phosphate tricalcique–fluorapatite présente une bonne aptitude au frittage à 1300 °C. Ainsi, des taux de densification de 90% ont pu être atteints pour
The tricalcium phosphate–fluorapatite composite has a good aptitude to sintering at 1300 °C, so a densification rate of about 90% was reached with 33.16 wt% of fluorapatite. At 1300 °C, the increase of the content of fluorapatite in the composite favours the formation of the α tricalcium phosphate phase. The 31P MAS-NMR analysis reveals the presence of three tetrahedral P sites for the tricalcium phosphate, whereas the fluorapatite possesses only one. At temperatures higher than 1300 °C, the densification is hindered by grain growth and the formation of large pores.
Accepté le :
Publié le :
Keywords: Tricalcium phosphate, Fluorapatite, Composite, Sintering, Densification, Microstructure, 31P MAS-NMR
Foued Ben Ayed 1, 2 ; Jamel Bouaziz 1
@article{CRPHYS_2007__8_1_101_0, author = {Foued Ben Ayed and Jamel Bouaziz}, title = {\'Elaboration et caract\'erisation d'un biomat\'eriau \`a base de phosphates de calcium}, journal = {Comptes Rendus. Physique}, pages = {101--108}, publisher = {Elsevier}, volume = {8}, number = {1}, year = {2007}, doi = {10.1016/j.crhy.2006.10.017}, language = {fr}, }
Foued Ben Ayed; Jamel Bouaziz. Élaboration et caractérisation d'un biomatériau à base de phosphates de calcium. Comptes Rendus. Physique, Observation of black holes and extreme gravitational events, Volume 8 (2007) no. 1, pp. 101-108. doi : 10.1016/j.crhy.2006.10.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.017/
[1] High Tech. Ceram. (1987), pp. 31-41
[2] , Calcium Phosphates in Oral Biology and Medicine, vol. 5, Karger, New York, 1991, p. 15
[3] J. Am. Ceram. Soc., 74 (1991) no. 7, pp. 1487-1510
[4] J. Am. Ceram. Soc., 75 (1992) no. 12, pp. 3401-3407
[5] J. Mater. Sci.: Mater. Med. (1993), p. 292
[6] An Introduction to Bioceramics, vol. 1, World Scientific, Gainesville, USA, 1993, p. 154
[7] Structure and Chemistry of the Apatite and Other Calcium Orthophosphates, Elsevier Science B.V., Amsterdam, 1994
[8] J. Mater. Sci.: Mater. Med., 6 (1995), p. 348
[9] Biomaterials, 20 (1999), pp. 1263-1267
[10] J. Eur. Ceram. Soc., 20 (2000), pp. 2377-2387
[11] J. Eur. Ceram. Soc., 20 (2000) no. 8, pp. 1069-1076
[12] Mater. Lett., 49 (2001), pp. 83-85
[13] Ann. Chim. Sci. Mater., 26 (2001) no. 6, pp. 75-86
[14] J. Alloys Compd., 322 (2001) no. 1–2, pp. 238-245
[15] Biomaterials, 23 (2002), pp. 909-914
[16] J. Non-Cryst. Solids, 304 (2002), p. 286
[17] Trends Biomater. Artif. Organs, 16 (2002) no. 1, pp. 15-17
[18] J. Biomater., 23 (2002), pp. 1073-1080
[19] J. Eur. Ceram. Soc., 23 (2003), pp. 229-241
[20] Key Eng. Mater., 240 (2003), p. 23
[21] Mater. Chem. Phys., 80 (2003), pp. 269-277
[22] Key Eng. Mater., 240 (2003), pp. 254-256
[23] Mater. Charact., 52 (2004), pp. 301-307
[24] Ann. Chim. Sci. Mater., 31 (2006) no. 4, pp. 393-406
[25] J. Eur. Ceram. Soc., 18 (1998), p. 131
[26] Mater. Sci. Eng., 11 (2000), p. 35
[27] M. Schmitt, thèse, université de Nantes, France, 2000
[28] Biomaterials, 1 (1980), p. 908
[29] C. R. Physique, 7 (2006) no. 7, pp. 825-835
[30] J. Solid-State Chem., 175 (2003), pp. 272-277
[31] J. Polym. Sci., 30 (1992), p. 613
- Mechanical strength characterization and modeling of hydroxyapatite/tricalcium phosphate biocomposite using the diametral-compression test, The European Physical Journal Applied Physics, Volume 93 (2021) no. 3, p. 30403 | DOI:10.1051/epjap/2021200368
- Combined numerical and experimental mechanical characterization of a calcium phosphate ceramic using modified Brazilian disc and SCB specimen, Materials Science and Engineering: A, Volume 670 (2016), p. 240 | DOI:10.1016/j.msea.2016.06.020
- Determination of elastic modulus, tensile strength and fracture toughness of bioceramics using the flattened Brazilian disc specimen: analytical and numerical results, Ceramics International, Volume 41 (2015) no. 9, p. 12340 | DOI:10.1016/j.ceramint.2015.06.063
- Influence of the sintering temperature on Young's modulus and the shear modulus of tricalcium phosphate – fluorapatite composites evaluated by ultrasound techniques, Materials Chemistry and Physics, Volume 141 (2013) no. 1, p. 289 | DOI:10.1016/j.matchemphys.2013.05.013
- Effect of fluorapatite additive on the mechanical properties of tricalcium phosphate-zirconia composites, IOP Conference Series: Materials Science and Engineering, Volume 28 (2012), p. 012029 | DOI:10.1088/1757-899x/28/1/012029
- Effect of Titania Additive on Structural and Mechanical Properties of Alumina–Fluorapatite Composites, Journal of Materials Science Technology, Volume 28 (2012) no. 12, p. 1130 | DOI:10.1016/s1005-0302(12)60182-0
- Sintering and mechanical properties of tricalcium phosphate–fluorapatite composites, Ceramics International, Volume 35 (2009) no. 5, p. 1909 | DOI:10.1016/j.ceramint.2008.10.030
- Elaboration and characterization of fluorapatite ceramic with controlled porosity, Materials Chemistry and Physics, Volume 113 (2009) no. 1, p. 219 | DOI:10.1016/j.matchemphys.2008.07.079
- Mechanical properties of tricalcium phosphate-fluorapatite-alumina composites, Physics Procedia, Volume 2 (2009) no. 3, p. 1441 | DOI:10.1016/j.phpro.2009.11.114
- Sintering of tricalcium phosphate–fluorapatite composites by addition of alumina, Ceramics International, Volume 34 (2008) no. 8, p. 1885 | DOI:10.1016/j.ceramint.2007.07.017
- Sintering of tricalcium phosphate–fluorapatite composites with zirconia, Journal of the European Ceramic Society, Volume 28 (2008) no. 10, p. 1995 | DOI:10.1016/j.jeurceramsoc.2008.02.004
Cité par 11 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier