Comptes Rendus
Nucleation problems in metallurgy of the solid state: recent developments and open questions
[Problèmes de germination dans de la métallurgie de l'état solide : des développements récents et des questions ouvertes]
Comptes Rendus. Physique, Nucleation, Volume 7 (2006) no. 9-10, pp. 959-976.

Les processus de germination jouent un rôle central dans les évolutions microstructurales des métaux et alliages observées au cours des traitements thermomécaniques. Ces processus peuvent résulter de transformations de phase (comme dans le cas de la précipitation) ou d'instabilités des défauts structuraux (comme dans la recristallisation). Quoique le terme de germination soit indifféremment utilisé dans les deux cas, la situation est profondément différente. Dans le cas de la précipitation, les espèces sont conservées, et la germination résulte de fluctuations statistiques autorisant l'apparition d'un germe critique de la nouvelle phase. Dans le cas de la recristallisation, le phénomène physique sous jacent est la croissance progressive d'une structure de sous grains, jusqu'à une configuration instable permettant la croissance d'un grain libre de dislocation dans une matrice fortement disloquée. Les deux cas nécessitent des traitements théoriques de nature différente qui sont présentés dans l'article.

Nucleation processes play a key role in the microstructure evolution of metallic alloys during thermomechanical treatments. These processes can involve phase transformations (such as precipitation) and structural instabilities (such as recrystallisation). Although the word ‘nucleation’ is used in both cases, the situation is profoundly different for precipitation and for recrystallisation on which this article is focussed. In the case of precipitation, species are conserved and the underlying physics is stochastic fluctuations, allowing the apparition of critical germs of the new phase. In the case of recrystallisation, the underlying physical phenomenon is the progressive growth of subgrain structures leading to an unstable configuration, allowing a dislocation free grain to grow at the expense of a dislocated one. The two cases require different types of modelling which are presented in the article.

Publié le :
DOI : 10.1016/j.crhy.2006.10.014
Keywords: Coherent precipitation, Recrystallisation
Mots-clés : Précipitation cohérente, Recristallisation

Yves Bréchet 1 ; Georges Martin 2

1 LTPCM, domaine universitaire de Grenoble, 38402 Saint Martin d'Heres cedex, France
2 CEA-Siège, cabinet du haut-commissaire, 91191 Gif sur Yvette cedex, France
@article{CRPHYS_2006__7_9-10_959_0,
     author = {Yves Br\'echet and Georges Martin},
     title = {Nucleation problems in metallurgy of the solid state: recent developments and open questions},
     journal = {Comptes Rendus. Physique},
     pages = {959--976},
     publisher = {Elsevier},
     volume = {7},
     number = {9-10},
     year = {2006},
     doi = {10.1016/j.crhy.2006.10.014},
     language = {en},
}
TY  - JOUR
AU  - Yves Bréchet
AU  - Georges Martin
TI  - Nucleation problems in metallurgy of the solid state: recent developments and open questions
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 959
EP  - 976
VL  - 7
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.014
LA  - en
ID  - CRPHYS_2006__7_9-10_959_0
ER  - 
%0 Journal Article
%A Yves Bréchet
%A Georges Martin
%T Nucleation problems in metallurgy of the solid state: recent developments and open questions
%J Comptes Rendus. Physique
%D 2006
%P 959-976
%V 7
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2006.10.014
%G en
%F CRPHYS_2006__7_9-10_959_0
Yves Bréchet; Georges Martin. Nucleation problems in metallurgy of the solid state: recent developments and open questions. Comptes Rendus. Physique, Nucleation, Volume 7 (2006) no. 9-10, pp. 959-976. doi : 10.1016/j.crhy.2006.10.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.014/

[1] J. Philibert; Y. Brechet; P. Combrade; A. Vignes Métallurgie, du minerai au matériau, Dunod, Paris, 2002

[2] P. Pareige; B. Radiguet; R. Krummeich-Brangier; A. Barbu; O. Zabusov; M. Kozodaev Phil. Mag., 85 (2005), pp. 429-441

[3] A.J. Ardell Intermetallic compounds as precipitates and dispersoids in high-strength alloys (J.H. Westbrook; R.L. Fleischer, eds.), Intermetallic Compounds: Principles and Practice, vol. 2, John Wiley & Sons, Chichester, England, 1995, pp. 257-286

[4] L.S. Toropova; D.G. Eskin; M.L. Kharaterova; T.V. Bobatkina Advanced Aluminum Alloys Containing Scandium—Structure and Properties, Gordon and Breach Sciences, Amsterdam, 1998

[5] A.R. Allnatt; A.B. Lidiard Atomic Transport in Solids, Cambridge Univ. Press, Cambridge, UK, 1993

[6] M. Nastar; V.Yu. Dobretsov; G. Martin; M. Nastar; V. Barbe; M. Nastar Phil. Mag., 80 (2000), p. 155

[7] D. Blavette; A. Bostel; J.M. Sarrau; B. Deconihout; A. Menand Nature, 363 (1993), p. 432

[8] The main results are being published in: C. Sigli (Ed.), Engineering Materials, in press

[9] E. Clouet; L. Laë; T. Épicier; W. Lefebvre; M. Nastar; A. Deschamps Nature Mater., 5 (2006), pp. 482-488

[10] G. Martin Solid–Solid Phase Transformations in Inorganic Materials (J. Howe et al., eds.), TMS, Warrendale, PA, 2005, pp. 291-299

[11] E. Clouet; A. Barbu; L. Laë; G. Martin Acta Mater., 53 (2005), pp. 2313-2325

[12] A. Perini; G. Jacucci; G. Martin Phys. Rev. B, 29 (1984), p. 2689

[13] J. Lepinoux Phil. Mag., 85 (2005), pp. 3585-3615

[14] F. Soisson; G. Martin Phys. Rev. B, 62 (2000), pp. 203-214

[15] Y. Le Bouar; F. Soisson Phys. Rev. B, 65 (2002) (094103)

[16] V. Belova; A.R. Allnatt; G.E. Murch J. Phys.: Condens. Matter, 14 (2002), p. 6897

[17] F. Soisson, private communication

[18] J.M. Roussel; P. Bellon Phys. Rev. B, 63 (2001) (184114)

[19] R. Weinkamer; P. Fratzl Europhys. Lett., 61 (2003), pp. 261-267

[20] C. Schmuck; P. Caron; A. Hauet; D. Blavette; C. Pareige; F. Soisson; G. Martin; D. Blavette Acta Mater., 76 (1997), pp. 527-542

[21] C.K. Sudbrack; K.E. Yoon; R.D. Noebe; D.N. Seidman Acta Mater., 54 (2006), pp. 3199-3210

[22] D. Seidman, et al., in preparation

[23] J. Friedel Dislocations, Pergamon Press, Oxford, UK, 1964

[24] F.J. Humphreys; M. Hatherly Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, UK, 1996

[25] M. Avrami; M. Avrami; M. Avrami J. Chem. Phys., 7 (1939), p. 1103

[26] C.M. Sellars, in: L. Arnberg, O. Lohne, E. Nes, N. Ryum (Eds.), International Conference on Aluminium Alloys, vol. 3, Trondheim, Norway, 1992, p. 89

[27] C.M. Sellars Annealing Processes: Recovery, Recrystallization and Grain Growth, Proceedings of the 7th Riso International Symposium (N. Hansen; D. Juul-Jensen; T. Leffers; B. Ralph, eds.), Riso National Laboratory, Roskilde, Denmark, 1986, p. 167

[28] J.E. Bailey; P.B. Hirsch Proc. Royal Soc. A, 267 (1962), p. 11

[29] H. Zurob; Y. Brechet; J. Dunlop Acta. Mater., 54 (2006), p. 3983

[30] F.J. Humphreys; F.J. Humphreys; P.J. Hurley; F.J. Humphreys Acta Mater., 45 (1997), p. 4231

[31] R. Sandstrom Acta Metall., 25 (1977), p. 905

[32] S.K. Varma Mat. Sci. Engrg., 82 (1986), p. L19

[33] M. Verdier; Y. Brechet; P. Guyot Acta Mater., 47 (1999), p. 127

[34] G. Gottstein; L. Shvindlerman Scripta Metal., 27 (1992), p. 1515

[35] O. Kwon; A.J. DeArdo Acta Metall. Mater., 38 (1990), p. 41

[36] C. Barioz, Y. Brechet, J.M. Legresy, M.C. Cheynet, in: L. Arnberg, O. Lohne, E. Nes, N. Ryum (Eds.), International Conference on Aluminium Alloys, vol. 2, Trondheim, Norway, 1992, p. 347

[37] K.P. Haung; W. Form Z. Metallkd., 80 (1989), p. 686

[38] M. Cigdem Z. Metallkd., 85 (1994), p. 723

[39] P. Guyot; G.M. Raynaud Acta Metall. Mater., 39 (1991), p. 317

[40] S.V. Raj; G.M. Pharr Mater. Sci. Engrg. A, 81 (1986), p. 217

[41] Y. Huang; F.J. Humphrey Aachen, Germany (G. Gottstein; A. Molodov, eds.), Springer-Verlag, Berlin/New York (2001), p. 645

[42] M. Koizumi; S. Kohara; H. Inagaki Z. Metallkd., 91 (2000), p. 460

  • Ping Yang; Pengyang Zhao Void nucleation at dislocation boundaries aided by the synergy of multiple dislocation pile-ups, International Journal of Plasticity, Volume 171 (2023), p. 103779 | DOI:10.1016/j.ijplas.2023.103779
  • A. Després; J.D. Mithieux; C.W. Sinclair Modelling the relationship between deformed microstructures and static recrystallization textures: Application to ferritic stainless steels, Acta Materialia, Volume 219 (2021), p. 117226 | DOI:10.1016/j.actamat.2021.117226
  • A. Després; M. Greenwood; C.W. Sinclair A mean-field model of static recrystallization considering orientation spreads and their time-evolution, Acta Materialia, Volume 199 (2020), p. 116 | DOI:10.1016/j.actamat.2020.08.013
  • T. Chauve; M. Montagnat; F. Barou; K. Hidas; A. Tommasi; D. Mainprice Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 375 (2017) no. 2086, p. 20150345 | DOI:10.1098/rsta.2015.0345
  • Paul Duval; François Louchet; Jérôme Weiss; Maurine Montagnat On the role of long-range internal stresses on grain nucleation during dynamic discontinuous recrystallization, Materials Science and Engineering: A, Volume 546 (2012), p. 207 | DOI:10.1016/j.msea.2012.03.052
  • Eric A. Jägle; Eric J. Mittemeijer The Kinetics of and the Microstructure Induced by the Recrystallization of Copper, Metallurgical and Materials Transactions A, Volume 43 (2012) no. 4, p. 1117 | DOI:10.1007/s11661-011-0959-6
  • Eric A. Jägle; Eric J. Mittemeijer Interplay of Kinetics and Microstructure in the Recrystallization of Pure Copper: Comparing Mesoscopic Simulations and Experiments, Metallurgical and Materials Transactions A, Volume 43 (2012) no. 7, p. 2534 | DOI:10.1007/s11661-012-1094-8
  • Christopher Booth-Morrison; David C. Dunand; David N. Seidman Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Materialia, Volume 59 (2011) no. 18, p. 7029 | DOI:10.1016/j.actamat.2011.07.057
  • Paul Duval; Maurine Montagnat; Fanny Grennerat; Jerome Weiss; Jacques Meyssonnier; Armelle Philip Creep and plasticity of glacier ice: a material science perspective, Journal of Glaciology, Volume 56 (2010) no. 200, p. 1059 | DOI:10.3189/002214311796406185
  • Christopher Booth-Morrison; Yang Zhou; Ronald D. Noebe; David N. Seidman On the nanometer scale phase separation of a low-supersaturation Ni–Al–Cr alloy, Philosophical Magazine, Volume 90 (2010) no. 1-4, p. 219 | DOI:10.1080/14786430902806660
  • J. Lepinoux Comparing kinetic Monte Carlo simulations with cluster dynamics: What can we learn about precipitation? Application to AlZr alloys, Philosophical Magazine, Volume 90 (2010) no. 23, p. 3261 | DOI:10.1080/14786435.2010.484403
  • Christopher Booth-Morrison; Jessica Weninger; Chantal K. Sudbrack; Zugang Mao; Ronald D. Noebe; David N. Seidman Effects of solute concentrations on kinetic pathways in Ni–Al–Cr alloys, Acta Materialia, Volume 56 (2008) no. 14, p. 3422 | DOI:10.1016/j.actamat.2008.03.016

Cité par 12 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: