Comptes Rendus
Quasi-phasematching
[Quasi-accord de phase]
Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 180-198.

L'utilisation de cristaux microstructurés pour les interactions optiques non linéaires en quasi-accord de phase (QAP) a permis le fonctionnement de dispositifs non linéaires dans des régimes inaccessibles avec des milieux biréfringents conventionnels en accord de phase. Cette revue traite de la théorie de base des interactions en QAP, des ferroélectriques et semi-conducteurs microstructurés pour le QAP, des dispositifs basés sur les milieux à QAP, ainsi que d'une série de techniques basées sur l'ingénierie des réseaux de QAP dans l'objectif de façonner les réponses, spatiale et spectrale, des interactions en QAP. Comme il n'est pas possible de rendre justice en une brève revue au grand nombre de résultats qui ont été obtenus pour les milieux à quasi-accord de phase au cours des vingt dernières années, la présente contribution se concentrera sur quelques aspects des interactions en QAP au-delà de leur simple utilisation comme alternatives hautement non linéaires aux milieux conventionnels biréfringents.

The use of microstructured crystals in quasi-phasematched (QPM) nonlinear interactions has enabled operation of nonlinear devices in regimes inaccessible to conventional birefringently phasematched media. This review addresses basic aspects of the theory of QPM interactions, microstructured ferroelectrics and semiconductors for QPM, devices based on QPM media, and a series of techniques based on engineering of QPM gratings to tailor spatial and spectral response of QPM interactions. Because it is not possible in a brief review to do justice to the large body of results that have been obtained with QPM media over the past twenty years, the emphasis in this review will be on aspects of QPM interactions beyond their use simply as highly nonlinear alternatives to conventional birefringent media.

Publié le :
DOI : 10.1016/j.crhy.2006.10.022
David S. Hum 1 ; Martin M. Fejer 1

1 E.L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
@article{CRPHYS_2007__8_2_180_0,
     author = {David S. Hum and Martin M. Fejer},
     title = {Quasi-phasematching},
     journal = {Comptes Rendus. Physique},
     pages = {180--198},
     publisher = {Elsevier},
     volume = {8},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crhy.2006.10.022},
     language = {en},
}
TY  - JOUR
AU  - David S. Hum
AU  - Martin M. Fejer
TI  - Quasi-phasematching
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 180
EP  - 198
VL  - 8
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.022
LA  - en
ID  - CRPHYS_2007__8_2_180_0
ER  - 
%0 Journal Article
%A David S. Hum
%A Martin M. Fejer
%T Quasi-phasematching
%J Comptes Rendus. Physique
%D 2007
%P 180-198
%V 8
%N 2
%I Elsevier
%R 10.1016/j.crhy.2006.10.022
%G en
%F CRPHYS_2007__8_2_180_0
David S. Hum; Martin M. Fejer. Quasi-phasematching. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 180-198. doi : 10.1016/j.crhy.2006.10.022. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.022/

[1] J.A. Armstrong; N. Bloembergen; J. Ducuing; P.S. Pershan Interactions between light waves in a nonlinear dielectric, Phys. Rev., Volume 127 (1962), pp. 1918-1939

[2] P.A. Franken; J.F. Ward Optical harmonics and nonlinear phenomena, Rev. Mod. Phys., Volume 35 (1963), pp. 23-39

[3] M.M. Fejer; G.A. Magel; D.H. Jundt; R.L. Byer Quasi-phase-matched second harmonic generation: Tuning and tolerances, IEEE J. Quantum. Electron., Volume QE-28 (1992), pp. 2631-2654

[4] L. Yunchu; Q. Wang; X. Zhang; D. Yuan; Z. Liu; Z. Jiang; Z. Liu; S. Li; S. Fan; S. Zhang Influence of stochastic deviations of domain boundary and varying effective index on difference frequency mixing in quasi-phase-matching waveguides, Opt. Commun., Volume 247 (2005), pp. 205-212

[5] R.C. Miller Optical harmonic generation in single crystal BaTiO3, Phys. Rev., Volume 134 (1964), p. A1313-A1319

[6] Y.H. Xue; N.B. Ming; J.S. Zhu; D. Feng The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains, Chinese Phys., Volume 4 (1984), pp. 554-564

[7] A. Feisst; P. Koidl Current induced periodic ferroelectric domain structures in LiNbO3, applied for efficient nonlinear optical frequency mixing, Appl. Phys. Lett., Volume 47 (1985), pp. 1125-1127

[8] E.J. Lim; M.M. Fejer; R.L. Byer Second harmonic generation of green light in a periodically-poled planar lithium niobate waveguide, Electron. Lett., Volume 25 (1989), pp. 174-175

[9] C.J. van der Poel; J.D. Bierlein; J.B. Brown; S. Colak Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides, Appl. Phys. Lett., Volume 57 (1990), pp. 2074-2076

[10] S. Matsumoto; E.J. Lim; H.M. Hertz; M.M. Fejer Quasiphase-matched second harmonic generation of blue light in a electrically periodically-poled lithium tantalate, Electron. Lett., Volume 27 (1991), pp. 2040-2041

[11] G.D. Miller Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance http://wwwlib.umi.com/cr/stanford/fullcit?p9901557 (Ph.D. Thesis, Stanford University, Stanford, California, 1998)

[12] V.Y. Shur; E.L. Rumyantsev; E.V. Nikolaeva; E.I. Shishkin; R.G. Batchko; M.M. Fejer; R.L. Byer; I. Mnushkina Domain kinetics in congruent and stoichiometric lithium niobate, Ferroelectrics, Volume 269 (2002), pp. 1037-1042

[13] P. Urenski; G. Rosenman; M. Molotskii Fine mechanisms of polarization switching in KTiOPO4 ferroelectric crystals, Ferroelectrics, Volume 268 (2002), pp. 497-502

[14] H. Ishizuki; I. Shoji; T. Taira Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature, Appl. Phys. Lett., Volume 82 (2003), pp. 4062-4064

[15] G. Rosenman; A. Skliar; D. Eger; M. Oron; M. Katz Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals, Appl. Phys. Lett., Volume 73 (1998), pp. 3650-3652

[16] L. Kovacs; G. Ruschhaupt; K. Polgar; G. Corradi; M. Wohlecke Composition dependence of the ultraviolet absorption edge in lithium niobate, Appl. Phys. Lett., Volume 70 (1997), pp. 2801-2803

[17] C. Baumer; C. David; A. Tunyagi; K. Betzler; H. Hesse; E. Kratzig; M. Wohlecke Composition dependence of the ultraviolet absorption edge in lithium tantalate, J. Appl. Phys., Volume 93 (2003), pp. 3102-3104

[18] R. White; I. McKinnie; S. Butterworth; G. Baxter; D. Warrington; P. Smith; G. Ross; D. Hanna Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler, Appl. Phys. B: Lasers and Optics, Volume 77 (2003), pp. 547-550

[19] J.P. Meyn; M.M. Fejer Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate, Opt. Lett., Volume 22 (1997), pp. 1214-1216

[20] M.A. Watson; M.V. O'Connor; P.S. Lloyd; D.P. Shepherd; D.C. Hanna; C.B.E. Gawith; L. Ming; P.G.R. Smith; O. Balachninaite Extended operation of synchronously pumped optical parametric oscillators to longer idler wavelengths, Opt. Lett., Volume 27 (2002), pp. 2106-2108

[21] F. Jermann; M. Simon; E. Kratzig Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2066-2070

[22] Y. Furukawa; K. Kitamura; A. Alexandrovski; R.K. Route; M.M. Fejer; G. Foulon Green-induced infrared absorption in MgO-doped LiNbO3, Appl. Phys. Lett., Volume 78 (2001), pp. 1970-1972

[23] M. Taya; M.C. Bashaw; M.M. Fejer Photorefractive effects in periodically poled ferroelectrics, Opt. Lett., Volume 21 (1999), pp. 857-859

[24] D.A. Bryan; R. Gerson; H.E. Tomaschke Increased optical damage resistance in lithium niobate, Appl. Phys. Lett., Volume 44 (1984), pp. 847-849

[25] Y. Furukawa; K. Kitamura; E. Suzuki; K. Niwa Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system, J. Crystal Growth, Volume 197 (1999), pp. 889-895

[26] M. Katz; R.K. Route; D.S. Hum; K.R. Parameswaran; G.D. Miller; M.M. Fejer Vapor-transport equilibrated near-stoichiometric lithium tantalate for frequency-conversion applications, Opt. Lett., Volume 29 (2004), pp. 1775-1777

[27] Y. Furukawa; K. Kitamura; S. Takekawa; K. Niwa; H. Hatano Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics, Opt. Lett., Volume 23 (1998), pp. 1892-1894

[28] F. Nitanda; Y. Furukawa; S. Makio; M. Sato; K. Ito Increased optical damage resistance and transparency in MgO-doped LiTaO3 single crystals, Jpn. J. Appl. Phys., Volume 34 (1995), pp. 1546-1549

[29] K. Nakamura; T. Hatanaka; H. Ito High output energy quasi-phase-matched optical parametric oscillators using diffusion-bonded periodically poled and single domain LiNbO3, Jpn. J. Appl. Phys., Volume 40 (2001), p. L337-L339

[30] H. Ishizuki; T. Taira High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm × 5 mm aperture, Opt. Lett., Volume 30 (2005), pp. 2918-2920

[31] D.S. Hum, R.K. Route, G.D. Miller, M.M. Fejer, Quasi-phase-matched second harmonic generation using 42° rotated Y-cut near-stoichiometric lithium tantalate, in: Conf. on Lasers and Electro-Optics, 2004, CthU2

[32] M. Peltz; U. Bader; A. Borsutzky; R. Wallenstein; J. Hellstrom; H. Karlsson; V. Pasiskevicius; F. Laurell Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA, Appl. Phys. B: Lasers and Optics, Volume 73 (2001), pp. 663-670

[33] F. Laurell; J.B. Brown; J.D. Bierlein Simultaneous generation of UV and visible light in segmented KTP waveguides, Appl. Phys. Lett., Volume 62 (1993), pp. 1872-1874

[34] B. Boulanger; I. Rousseau; J.P. Feve; M. Maglione; B. Menaert; G. Marnier Optical studies of laser-induced gray-tracking in KTP, IEEE J. Quant. Electron., Volume 35 (1999), pp. 281-286

[35] S. Wang; V. Pasiskevicius; F. Laurell; H. Karlsson Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4, Opt. Lett., Volume 23 (1998), pp. 1883-1885

[36] A. Szilagyi; A. Hordvik; H. Schlossberg A quasi-phase matching technique for efficient optical mixing and frequency doubling, J. Appl. Phys., Volume 47 (1976), pp. 2025-2032

[37] D.E. Thompson; J.D. McMullen; D.B. Anderson Second harmonic generation in GaAs ‘stack of plates’ using high-power CO2 laser radiation, Appl. Phys. Lett., Volume 29 (1976), pp. 113-115

[38] P.S. Kuo; K.L. Vodopyanov; M.M. Fejer; D.M. Simanovskii; X. Yu; J.S. Harris; D. Bliss; D. Weyburne Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs, Opt. Lett., Volume 31 (2006), pp. 71-73

[39] D. Zheng; L.A. Gordon; Y.S. Wu; R.S. Feigelson; M.M. Fejer; R.L. Byer; K.L. Vodopyanov 16-μm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs, Opt. Lett., Volume 23 (1998), pp. 1010-1012

[40] R. Haidar; Ph. Kupecek; E. Rosencher Nonresonant quasi-phase matching in GaAs plates by Fresnel birefringence, Appl. Phys. Lett., Volume 83 (2003), pp. 1506-1508

[41] H. Komine; W.H. Long; J.W. Tully; E.A. Stappaerts Quasi-phase-matched second-harmonic generation by use of a total-internal-reflection phase shift in gallium arsenide and zinc selenide plates, Opt. Lett., Volume 23 (1998), pp. 661-663

[42] M.J. Angell; R.M. Emerson; J.L. Hoyt; J.F. Gibbons; L.A. Eyres; M.L. Bortz; M.M. Fejer Growth of alternating 100/111-oriented II–VI regions for quasi-phasematched nonlinear optical devices on GaAs substrates, Appl. Phys. Lett., Volume 64 (1994), pp. 3107-3109

[43] L.A. Eyres, C.B. Ebert, P.J. Tourreau, J.S. Harris, M.M. Fejer, Demonstration of second harmonic generation in all-epitaxially grown orientation-patterned AlGaAs waveguides, in: Advanced Solid-State Lasers, OSA TOPS, 1999, pp. 689–694

[44] S.J.B. Yoo; C. Caneau; R. Bhat; M.A. Koza; A. Rajhel; N. Antoniades Wavelength con-version by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding, Appl. Phys. Lett., Volume 68 (1996), pp. 2609-2611

[45] S.J. Koh; T. Kondo; T. Ishiwada; C. Iwamoto; H. Ichinose; H. Yaguchi; T. Usami; Y. Shiraki; R. Ito Sublattice reversal in GaAs/Si/GaAs(100) heterostructures by molecular beam epitaxy, Jpn. J. Appl. Phys., Volume 37 (1998), p. L1493-L1496

[46] C.B. Ebert; L.A. Eyres; M.M. Fejer; J.S. Harris MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy, J. Crystal Growth, Volume 201/202 (1999), pp. 187-193

[47] X. Yu; L. Scaccabarozzi; J.S. Harris; P.S. Kuo; M.M. Fejer Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides, Opt. Express, Volume 13 (2005), pp. 10742-10753

[48] L.A. Eyres; P.J. Tourreau; T.J. Pinguet; C.B. Ebert; J.S. Harris; M.M. Fejer; L. Becouarn; B. Gerard; E. Lallier All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion, Appl. Phys. Lett., Volume 79 (2001), pp. 904-906

[49] D.F. Bliss; C. Lynch; D. Weyburne; K. O'Hearn; J.S. Bailey Epitaxial growth of thick GaAs on orientation-patterned wafers for nonlinear optical applications, J. Crystal Growth, Volume 287 (2006), pp. 673-678

[50] L. Becouarn; B. Gerard; M. Brevignon; J. Lehoux; Y. Gourdel; E. Lallier Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy, Electron. Lett., Volume 34 (1998), pp. 2409-2410

[51] X. Yu MBE growth of III–V materials with orientation-patterned structures for nonlinear optics http://wwwlib.umi.com/cr/stanford/fullcit?p3209028 (Ph.D. Thesis, Stanford University, Stanford, California, 2006)

[52] S.C. Buchter; T.Y. Fan; V. Liberman; J.J. Zayhowski; M. Rothschild; E.J. Mason; A. Cassanho; H.P. Jenssen; J.H. Burnett Periodically poled BaMgF4 for ultraviolet frequency generation, Opt. Lett., Volume 26 (2001), pp. 1693-1695

[53] S. Kurimura, N.E. Yu, K. Kitamura, T. Yamada, K. Hayashi, Periodical twinning for quasiphase-matched quartz, in: Conf. on Lasers and Electro-Optics, 2003, CMF3

[54] T. Yamada, K. Hayashi, S. Kurimura, N.E. Yu, K. Kitamura, Harmonic generation characteristics of QPM quartz in visible-to-UV region, in: Quant. Electron. and Laser Science Conf., 2005, JtuC38

[55] G.D. Boyd; D.A. Kleinman Parametric interaction of focused Gaussian light beams, J. Appl. Phys., Volume 39 (1968), pp. 3597-3639

[56] G. Imeshev; M.A. Arbore; M.M. Fejer; A. Galvanauskas; M. Fermann; D. Harter Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 304-318

[57] S. Ashihara; T. Shimura; K. Kuroda Group-velocity matched second-harmonic generation in tilted quasi-phasematched gratings, J. Opt. Soc. Am. B, Volume 20 (2003), pp. 853-856

[58] A.M. Schober; M. Charbonneau-Lefort; M.M. Fejer Broadband quasi-phase-matched second-harmonic generation of ultrashort optical pulses with spectral angular dispersion, J. Opt. Soc. Am. B, Volume 22 (2005), pp. 1699-1713

[59] G.D. Miller; R.G. Batchko; W.M. Tulloch; D.R. Weise; M.M. Fejer; R.L. Byer 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate, Opt. Lett., Volume 22 (1997), pp. 1834-1836

[60] D. Taverner; P. Britton; P.G.R. Smith; D.J. Richardson; G.W. Ross; D.C. Hanna Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber: periodically poled lithium niobate source, Opt. Lett., Volume 23 (1998), pp. 162-164

[61] V. Pruneri; S.D. Butterworth; D.C. Hanna Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser, Opt. Lett., Volume 21 (1996), pp. 390-392

[62] W.R. Bosenberg; A. Drobshoff; J.I. Alexander; L.E. Myers; R.L. Byer 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator, Opt. Lett., Volume 21 (1996), pp. 1336-1338

[63] L.E. Myers; R.C. Eckardt; M.M. Fejer; R.L. Byer; W.R. Bosenberg Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3, Opt. Lett., Volume 21 (1996), pp. 591-593

[64] K.L. Vodopyanov; O. Levi; P.S. Kuo; T.J. Pinguet; J.S. Harris; M.M. Fejer; B. Gerard; L. Becouarn; E. Lallier Optical parametric oscillation in quasi-phase-matched GaAs, Opt. Lett., Volume 29 (2004), pp. 1912-1914

[65] L.E. Myers; R.C. Eckardt; M.M. Fejer; R.L. Byer; W.R. Bosenberg; J.W. Pierce Quasi-phasematched optical parametric oscillators using bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2102-2116

[66] L.E. Myers; W.R. Bosenberg Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators, IEEE J. Quant. Electron., Volume 33 (1997), pp. 1663-1672

[67] Y. Hirano, S. Yamamoto, T. Tajime, H. Taniguchi, M. Nakamura, High-power, room-temperature operation of a PPMgLN OPO, in: Conf. on Lasers and Electro-Optics, 2000, Post-Deadline 7, pp. 13–14

[68] S.-Y. Tu; A.H. Kung; Z.D. Gao; S.N. Zhu Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region, Opt. Lett., Volume 30 (2005), pp. 2451-2453

[69] J. Hebling; X.P. Zhang; H. Giessen; J. Kuhl; J. Seres Pulse characteristics of an optical parametric oscillator pumped by sub-30-fs light pulses, Opt. Lett., Volume 25 (2000), pp. 1055-1057

[70] K.A. Tillman; D.T. Reid; D. Artigas; J. Hellstrm; V. Pasiskevicius; F. Laurell Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion, Opt. Lett., Volume 28 (2003), pp. 543-545

[71] S. Lecomte; R. Paschotta; S. Pawlik; B. Schmidt; K. Furusawa; A. Malinowski; D.J. Richardson; U. Keller Optical parametric oscillator with a pulse repetition rate of 39 GHz and 2.1-W signal average output power in the spectral region near 1.5 μm, Opt. Lett., Volume 30 (2005), pp. 290-292

[72] A. Galvanauskas; M.A. Arbore; M.M. Fejer; M.E. Fermann; D. Harter Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3, Opt. Lett., Volume 22 (1997), pp. 105-107

[73] Y. Sasaki; A. Yuri; K. Kawase; H. Ito Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal, Appl. Phys. Lett., Volume 81 (2002), pp. 3323-3325

[74] Y.-S. Lee; T.B. Norris Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals, J. Opt. Soc. Am. B, Volume 19 (2002), pp. 2791-2794

[75] K.L. Vodopyanov, M.M. Fejer, D.M. Simanovskii, V.G. Kozlov, Y.-S. Lee, Terahertz-wave generation in periodically-inverted GaAs, in: Conf. on Lasers and Electro-Optics 2005, pp. 1450–1452

[76] E.J. Lim; M.M. Fejer; R.L. Byer; W.J. Kozlovsky Blue light generation by frequency doubling in a periodically poled lithium niobate channel waveguide, Electron. Lett., Volume 25 (1989), pp. 731-732

[77] K. Yamamoto; K. Mizuuchi; T. Taniuchi Milliwatt-order blue-light generation in a periodically domain-inverted LiTaO3 waveguide, Opt. Lett., Volume 16 (1991), pp. 1156-1158

[78] M.M. Fejer Nonlinear frequency conversion in periodically-poled ferroelectric waveguides (D.B. Ostrowsky; R. Reinisch, eds.), Guided Wave Nonlinear Optics, Kluwer Academic Publishers, Dordrecht, 1992, pp. 133-145

[79] M.L. Bortz; S.J. Field; M.M. Fejer; D. Nam; R. Waarts; D. Welch Noncritical quasi-phasematched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide, IEEE J. Quant. Electron., Volume 30 (1994), pp. 2953-2960

[80] K.R. Parameswaran; R.K. Route; J.R. Kurz; R.V. Roussev; M.M. Fejer; M. Fujimura Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate, Opt. Lett., Volume 27 (2002), pp. 179-181

[81] G. Schreiber; H. Suche; Y.L. Lee; W. Grundkötter; V. Quiring; R. Ricken; W. Sohler Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping, Appl. Phys. B: Lasers and Optics, Volume 73 (2001), pp. 501-504

[82] M. Asobe; O. Tadanaga; T. Yanagawa; H. Itoh; H. Suzuki Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters, Appl. Phys. Lett., Volume 78 (2001), pp. 3163-3165

[83] K. Mizuuchi; T. Sugita; K. Yamamoto; T. Kawaguchi; T. Yoshino; M. Imaeda Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3, Opt. Lett., Volume 28 (2003), pp. 1344-1346

[84] Y. Nishida; H. Miyazawa; M. Asobe; O. Tadanaga; H. Suzuki Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature, Electron. Lett., Volume 39 (2003), pp. 609-611

[85] J.D. Bierlein; A. Ferretti; L.H. Brixner; W.Y. Hsu Fabrication and characterization of optical waveguides in KTiOPO4, Appl. Phys. Lett., Volume 50 (1987), pp. 1216-1218

[86] D. Eger; M. Oron; M. Katz; A. Reizman; G. Rosenman; A. Skliar Quasi-phase-matched waveguides in electric field poled, flux grown KTiOPO4, Electron. Lett., Volume 33 (1997), pp. 1548-1550

[87] B. Agate; E.U. Rafailov; W. Sibbett; S.M. Saltiel; P. Battle; T. Fry; E. Noonan Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal, Opt. Lett., Volume 28 (2003), pp. 1963-1965

[88] M. Rusu; E.U. Rafailov; R. Herda; O.G. Okhotnikov; S.M. Saltiel; P. Battle; S. McNeil; A.B. Grudinin; W. Sibbett Efficient generation of green and UV light in a single PP-KTP waveguide pumped by a compact all-fiber system, Appl. Phys. Lett., Volume 88 (2006) (121105)

[89] E.U. Rafailov; D.J.L. Birkin; W. Sibbett; P. Battle; T. Fry; D. Mohatt Efficient frequency doubling of a pulsed laser diode by use of a periodically poled KTP waveguide crystal with Bragg gratings, Opt. Lett., Volume 26 (2001), pp. 1961-1962

[90] S.J.B. Yoo; R. Bhat; C. Caneau; M.A. Koza Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding, Appl. Phys. Lett., Volume 66 (1995), pp. 3410-3412

[91] X. Yu; L. Scaccabarozzi; O. Levi; T.J. Pinguet; M.M. Fejer; J.S. Harris Templated design and fabrication for low-loss orientation-patterned nonlinear AlGaAs waveguides pumped at 1.55 μm, J. Crystal Growth, Volume 251 (2003), pp. 794-799

[92] Z. Ye; Q. Lou; J. Dong; Y. Wei; L. Lin Compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals, Opt. Lett., Volume 30 (2005), pp. 73-74

[93] K. Sakai; Y. Koyata; Y. Hirano Planar-waveguide quasi-phase-matched second-harmonic-generation device inY-cut MgO-doped LiNbO3, Opt. Lett., Volume 31 (2006), pp. 3134-3136

[94] K.P. Petrov; A.T. Ryan; T.L. Patterson; L. Huang; S.J. Field; D.J. Bamford Spectroscopic detection of methane by use of guided-wave diode-pumped difference-frequency generation, Opt. Lett., Volume 23 (1998), pp. 1052-1054

[95] M.A. Arbore; M.M. Fejer Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides, Opt. Lett., Volume 22 (1997), pp. 151-153

[96] G. Schreiver; D. Hofmann; W. Grundkoetter; Y.L. Lee; H. Suche; V. Quiting; R. Ricken; W. Sohler Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides, Proc. of SPIE, Volume 4277 (2001), pp. 144-160

[97] X. Xie; A.M. Schober; C. Langrock; R.V. Roussev; J.R. Kurz; M.M. Fejer Picojoule threshold, picosecond optical parametric generation in reverse proton-exchanged lithium niobate waveguides, J. Opt. Soc. Am. B, Volume 21 (2004), pp. 1397-1402

[98] C. Langrock; S. Kumar; J.E. McGeehan; A. Willner; M.M. Fejer All optical signal processing using χ2 nonlinearities in guided-wave devices, J. Lightwave Tech., Volume 24 (2006), pp. 2579-2592

[99] S. Tanzilli; H. De Riedmatten; H. Tittle; H. Zbinden; P. Baldi; M. De Micheli; D.B. Ostrowsky; N. Gisin Highly efficient photon-pair source using periodically poled lithium niobate waveguide, Electron. Lett., Volume 37 (2001), pp. 26-28

[100] C. Langrock; E. Diamanti; R.V. Roussev; H. Takesue; Y. Yamamoto; M.M. Fejer Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides, Opt. Lett., Volume 30 (2005), pp. 1725-1727

[101] S. Tanzilli; W. Tittel; M. Halder; O. Alibart; P. Baldi; N. Gisin; H. Zbinden A photonic, quantum information interface, Nature, Volume 437 (2005), pp. 116-120

[102] S. Tanzilli; W. Tittel; H. De Riedmatten; H. Zbinden; P. Baldi; M. De Micheli; D.B. Ostrowsky; N. Gisin PPLN waveguide for quantum communication, Eur. Phys. J. D, Volume 18 (2002), pp. 155-160

[103] P.E. Powers; T.J. Kulp; S.E. Bisson Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design, Opt. Lett., Volume 23 (1998), pp. 159-161

[104] G. Imeshev; M. Proctor; M.M. Fejer Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal, Opt. Lett., Volume 23 (1998), pp. 165-167

[105] I. Juwiler; A. Arie; A. Skliar; G. Rosenman Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity, Opt. Lett., Volume 24 (1999), pp. 1236-1238

[106] G. Imeshev; M. Proctor; M.M. Fejer Lateral patterning of nonlinear frequency conversion with transversely varying quasi-phase-matching gratings, Opt. Lett., Volume 23 (1998), pp. 673-675

[107] J.R. Kurz; A.M. Schober; D.S. Hum; A.J. Saltzman; M.M. Fejer Nonlinear physical optics with transversely patterned quasi-phase-matching gratings, IEEE J. Sel. Top. Quant. Electron., Volume 8 (2002), pp. 660-664

[108] K. Kintaka; M. Fujimura; T. Suhara; H. Nishihara Third harmonic generation of Nd:YAG laser light in periodically poled LiNbO3, Electron. Lett., Volume 33 (1997), pp. 1459-1461

[109] W.R. Bosenberg; J.I. Alexander; L.E. Myers; R.W. Wallace 2.5-W, continuous-wave, 629-nm solid-state laser source, Opt. Lett., Volume 23 (1998), pp. 207-209

[110] M. Nazarathy; D.W. Dolfi Spread-spectrum nonlinear-optical interactions: quasi-phase matching with pseudorandom polarity reversals, Opt. Lett., Volume 12 (1987), pp. 823-825

[111] M.A. Arbore; O. Marco; M.M. Fejer Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings, Opt. Lett., Volume 22 (1997), pp. 865-867

[112] G. Imeshev; M.A. Arbore; M.M. Fejer; A. Galvanauskas; M. Fermann; D. Harter Ultrashort-pulse second harmonic generation with longitudinally nonuniform gratings: Pulse compression and shaping, J. Opt. Sci. Am. B, Volume 17 (2000), pp. 304-318

[113] M.H. Chou; K.R. Parameswaran; M.M. Fejer; I. Brener Multiple channel wavelength conversion using engineered quasi-phasematching structures in LiNbO3 waveguides, Opt. Lett., Volume 24 (1999), pp. 1157-1159

[114] A. Arie; K. Fradkin-Kashi; A. Bahabad; G. Rosenman; P. Urenski Multiple nonlinear processes in 1D and 2D periodic and quasi-periodic structures, Proc. SPIE, Volume 4972 (2003), pp. 13-24

[115] M. Asobe; O. Tadanaga; H. Miyazawa; Y. Nishida; H. Suzuki Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure, Opt. Lett., Volume 28 (2003), pp. 558-560

[116] S. Zhu; Y. Zhu; Y. Qin; H. Wang; C. Ge; N. Ming Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3, Phys. Rev. Lett., Volume 78 (1997), pp. 2752-2755

[117] X. Liu; Y. Li Optimal design of DFG-based wavelength conversion based on hybrid genetic algorithm, Opt. Express, Volume 11 (2003), pp. 1677-1688

[118] J. Huang; X.P. Xie; C. Langrock; R.V. Roussev; D.S. Hum; M.M. Fejer Amplitude modulation and apodization of quasi-phase-matched interactions, Opt. Lett., Volume 31 (2006), pp. 604-606

[119] N.G.R. Broderick; G.W. Ross; H.L. Offerhaus; D.J. Richardson; D.C. Hanna Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal, Phys. Rev. Lett., Volume 84 (2000), pp. 4345-4348

[120] A.M. Weiner; A.M. Kan'an; D.E. Leaird High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal, Opt. Lett., Volume 23 (1998), pp. 1441-1443

[121] M.A. Arbore; O. Marco; M.M. Fejer Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings, Opt. Lett., Volume 22 (1997), pp. 865-867

[122] K. Green, A. Galvanauskas, K.K. Wong, D. Harter, Cubic-phase mismatch compensation in femtosecond CPA systems using nonlinear-chirp-period poled LiNbO3, in: Nonlinear Optics: Materials, Fundamentals, and Applications, Technical Digest, 2000, pp. 113–115

[123] M.A. Arbore; A. Galvanauskas; D. Harter; M.H. Chou; M.M. Fejer Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate, Opt. Lett., Volume 22 (1997), pp. 1341-1343

[124] G. Imeshev; M.M. Fejer; A. Galvanauskas; D. Harter Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings, J. Opt. Soc. Am. B, Volume 18 (2001), pp. 534-539

[125] G. Imeshev; M.M. Fejer; A. Galvanauskas; D. Harter Generation of dual-wavelength pulses by frequency doubling with quasi-phase-matching gratings, Opt. Lett., Volume 26 (2001), pp. 268-270

[126] A.M. Schober; G. Imeshev; M.M. Fejer Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation, Opt. Lett., Volume 27 (2002), pp. 1129-1131

[127] L. Gallmann; G. Steinmeyer; G. Imeshev; J.P. Meyn; M.M. Fejer; U. Keller Sub-6-fs blue pulses generated by quasi-phase-matching second-harmonic generation pulse compression, Appl. Phys. B: Lasers and Optics B, Volume 74 (2002), p. S237-S243

[128] I. Jovanovic; B.J. Comaskey; C.A. Ebbers; R.A. Bonner; D.M. Pennington; E.C. Morse Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers, Appl. Opt., Volume 41 (2002), pp. 2923-2929

[129] M. Charbonneau-Lefort, A.M. Schober, B. Afeyan, M.M. Fejer, Broadband optical parametric amplifier using chirped quasi-phase-matched gratings, in: Conf. on Lasers and Electro-Optics, 2006, CThO2

[130] D. Artigas; D.T. Reid; M.M. Fejer; L. Torner Pulse compression and gain enhancement in a degenerate optical parametric amplifier based on aperiodically poled crystals, Opt. Lett., Volume 27 (2002), pp. 442-444

[131] M. Charbonneau-Lefort; M.M. Fejer; B. Afeyan Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control, Opt. Lett., Volume 6 (2005), pp. 634-636

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Parametric fluorescence in semiconductor waveguides

Marco Ravaro; Loïc Lanco; X. Marcadet; ...

C. R. Phys (2007)


Continuous-wave mid-infrared laser sources based on difference frequency generation

Weidong Chen; Julien Cousin; Emmanuelle Poullet; ...

C. R. Phys (2007)


Infrared (2–12 μm) solid-state laser sources: a review

Antoine Godard

C. R. Phys (2007)