[Sources laser solide infrarouge (2–12 μm) : une revue]
Le domaine infrarouge est très intéressant pour de nombreuses applications grâce à deux caractéristiques particulières : (i) il contient plusieurs fenêtres de transmission de l'atmosphère, (ii) il correspond à la région ‘d'empreintes digitales’ du spectre électromagnétique où de nombreuses molécules présentent de fortes raies rovibrationnelles d'absorption. Dans de nombreux cas, ces applications (telles que la chirurgie laser, l'analyse de gaz, la détection à distance, la spectrocopie non linéaire, les contre-mesures) nécessitent de disposer de rayonnement cohérent tel que celui émis par une source laser. Dans ce contexte, le choix de la bonne filière est un paramètre clef. En fonction de l'application sélectionnée, il peut être requis que la source délivre un rayonnement accordable, une faible largeur de raie, un faisceau proche de la limite de diffraction, une émission continue ou impulsionnelle, etc. Cet article passe brièvement en revue les principales technologies, restreintes aux sources continues ou impulsionnelles nanoseconde émettant dans l'intervalle 2–12 μm. Les filières technologiques considérées incluent les lasers solide et fibre dopés aux ions terre-rare ou métal de transition, les lasers semi-conducteurs et les sources paramétriques optiques. Les avantages et les inconvénients de ces technologies sont ensuite discutés rapidement dans le contexte de quelques applications sélectionnées.
The infrared domain is very attractive for many applications owing to two unique features: (i) it contains several atmospheric transparency windows, (ii) it corresponds to the ‘molecular fingerprint’ region of the electromagnetic spectrum where various molecules have strong rovibrational absorption lines. In many cases, these applications (e.g. laser surgery, trace gas monitoring, remote sensing, nonlinear spectroscopy, countermeasures, …) require coherent light radiation as the one emitted by a laser source. In this context, the choice of the proper technology is a key issue. Depending on the selected application, it could be required the source to deliver tunable emission, narrow linewidth, nearly diffraction limited beam, pulsed or continuous-wave (CW) radiation, etc. This article briefly reviews the main technologies, restricted to CW and nanosecond pulsed sources emitting in the 2–12 μm range. The technologies considered include rare-earth and transition-metal doped bulk and fiber lasers, semiconductor lasers, and optical parametric sources. Pros and cons of these technologies are then briefly discussed in the context of several selected applications.
Mots-clés : Infrarouge, Laser, Terre-rare, Métal de transition, Laser à semi-conducteur, Laser à cascade quantique, Source paramétrique
Antoine Godard 1
@article{CRPHYS_2007__8_10_1100_0, author = {Antoine Godard}, title = {Infrared (2{\textendash}12 \ensuremath{\mu}m) solid-state laser sources: a review}, journal = {Comptes Rendus. Physique}, pages = {1100--1128}, publisher = {Elsevier}, volume = {8}, number = {10}, year = {2007}, doi = {10.1016/j.crhy.2007.09.010}, language = {en}, }
Antoine Godard. Infrared (2–12 μm) solid-state laser sources: a review. Comptes Rendus. Physique, Optical parametric sources for the infrared, Volume 8 (2007) no. 10, pp. 1100-1128. doi : 10.1016/j.crhy.2007.09.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.010/
[1] Solid-State Mid-Infrared Sources (I.T. Sorokina; K.L. Vodopyanov, eds.), Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003
[2] Highly efficient high-power thulium-doped germanate glass fiber laser, Opt. Lett., Volume 32 (2007), pp. 638-640
[3] Power-scalable thulium and holmium fibre lasers pumped by 793 nm diode lasers, Advanced Solid-State Photonics 2007, The Optical Society of America, Washington, 2007 (Technical Digest, WE5)
[4] http://www.ipgphotonics.com/
[5] 120-W continuous-wave diode-pumped Tm:YAG laser, Opt. Lett., Volume 25 (2000), pp. 1591-1593
[6] A CW side-pumped Tm:YLF laser (M. Ferman; L. Marshall, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 68, Optical Society of America, 2002, pp. 343-346
[7] High power Q-switched Tm:YALO lasers (G.J. Quarles, ed.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 94, Optical Society of America, 2004, pp. 329-332
[8] Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers, Opt. Lett., Volume 32 (2007), pp. 1056-1058
[9] Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation, Appl. Phys. B, Volume 85 (2006), pp. 553-555
[10] Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm, Opt. Lett., Volume 19 (1994), pp. 883-885
[11] Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett., Volume 15 (1990), pp. 486-488
[12] Efficient 1.94 μm Tm:YALO laser, IEEE J. Sel. Topics Quantum Electron., Volume 1 (1995), pp. 78-80
[13] Broadly tunable laser emission from Tm:Y2O3 and Tm:Sc2O3 at 2 μm (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 450-453
[14] High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm, Opt. Lett., Volume 27 (2002), pp. 1989-1991
[15] Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser (M. Ferman; L. Marshall, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 68, Optical Society of America, 2002, pp. 347-350
[16] High-power widely tunable Tm:fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm, Opt. Express, Volume 14 (2006), pp. 6084-6090
[17] Mid-IR laser application in medicine (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin Heidelberg, 2003, pp. 511-544
[18] 1 J/pulse Q-switched 2 μm solid-state laser, Opt. Lett., Volume 31 (2006), pp. 462-464
[19] Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG, IEEE J. Quantum Electron., Volume 24 (1988), pp. 924-933
[20] Efficient mid-infrared laser using 1.9 μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 723-728
[21] Midinfrared laser source with high power and beam quality, Appl. Opt., Volume 45 (2006), pp. 3839-3845
[22] Ho:YAG laser pumped by 1.9 μm diode lasers, IEEE J. Quantum Electron., Volume 31 (1995), pp. 1603-1605
[23] High power, high energy Ho:YLF laser pumped with Tm:fiber laser (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 608-612
[24] Cascade laser oscillation due to Ho3+ ions in a (Cr,Yb,Ho):YSGG yttrium–scandium–gallium garnet crystal, Sov. J. Quantum Electron., Volume 23 (1993), pp. 312-316 (transl. from: Kvan. Elektron., 20, 1993, pp. 366-370)
[25] Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm, Opt. Lett., Volume 29 (2004), pp. 334-336
[26] Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet, J. Appl. Phys., Volume 87 (2000), pp. 4063-4068
[27] 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser, Opt. Lett., Volume 32 (2007), pp. 26-28
[28] Tunable CW Er:YLF diode-pumped laser, Advanced Solid-State Photonics, Optical Society of America, 2003, pp. 5-7 (Technical Digest)
[29] Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications, Opt. Express, Volume 12 (2004), pp. 5125-5130
[30] Diode-pumped Q-switched erbium lasers with short pulse duration (R.C. Pollock; W.R. Bosenberg, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 10, Optical Society of America, 1997, pp. 217-221
[31] Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quantum Electron., Volume 32 (1996), pp. 885-895
[32] Cr2+-doped II–VI materials for lasers and nonlinear optics, Opt. Mat., Volume 26 (2004), pp. 395-412
[33] Ultrabroadband infrared solide-state lasers, IEEE J. Sel. Topics Quantum Electron., Volume 11 (2005), pp. 690-712
[34] Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals, Appl. Phys. B, Volume 72 (2001), pp. 253-255
[35] Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers, Opt. Let., Volume 27 (2002), pp. 909-911
[36] 1.9 μm and 2.0 μm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe, Opt. Let., Volume 27 (2002), pp. 1034-1036
[37] Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm, Opt. Lett., Volume 31 (2006), pp. 2293-2295
[38] Chirped-mirror dispersion controlled femtosecond Cr:ZnSe laser, Advanced Solid-State Photonics, Optical Society of America, 2007 OSA Technical Digest Series (CD), paper WA7
[39] Power scaling of Cr2+:ZnSe lasers (C. Marshall, ed.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 50, Optical Society of America, 2001, pp. 506-510
[40] High-brightness, rapidly-tunable Cr:ZnSe lasers (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 723-727
[41] Tunable infrared laser sources for DIAL (G.W. Kamerman, ed.), Laser Radar Technology and Applications VII, Proc. SPIE, vol. 4723, 2002, pp. 147-155
[42] Widely tunable Cr2+:ZnSe laser source for trace-gas sensing (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 826-830
[43] High-power, rapidly-tunable ZnGeP2 intracavity optical parametric oscillator, Conference on Lasers and Electro-Optics, Optical Society of America, 2005 (Technical Digest, paper CThY5)
[44] High-power, rapidly tunable dual band CdSe optical parametric oscillator (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 433-437
[45] Mid-infrared electroluminescence of Cr2+ ions in ZnSe crystals, Advanced Solid-State Photonics, Optical Society of America, 2006 (Technical Digest, WB21)
[46] Room-temperature electroluminescence in the mid-infrared (2–3 μm) from bulk chromium-doped ZnSe, Opt. Lett., Volume 31 (2006), pp. 3051-3053
[47] 3.77–5.05 μm tunable solid-state lasers on Fe2+-doped ZnSe crystals operating low and room temperatures, IEEE J. Quantum Electron., Volume 42 (2006), pp. 907-917
[48] Mid-infrared 2–5 μm heterojunction laser diodes (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003, pp. 1-59
[49] 2.3–2.7 μm room temperature CW operation of InGaAsSb–AlGaAsSb broad waveguide SCH-QW diode lasers, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 794-796
[50] High-power GaInAsSb–AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 μm, IEEE Photon. Technol. Lett., Volume 6 (1994), pp. 7-9
[51] 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes, Appl. Phys. Lett., Volume 70 (1997), pp. 2931-2933
[52] Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves, Appl. Phys. Lett., Volume 81 (2002), pp. 3146-3148
[53] Low threshold high-power room-temperature continuous-wave operation diode laser emitting at 2.26 μm, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 1253-1255
[54] High-power 2.3 μm laser arrays emitting 10 W CW at room temperature, Electron. Lett., Volume 40 (2004), pp. 737-738
[55] High-power 1.9 μm diode laser arrays with reduced far-field angle, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 628-630
[56] GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6-W diffraction-limited power, IEEE Photon. Technol. Lett., Volume 10 (1998), pp. 938-940
[57] GaSb-based tapered diode lasers at 1.93 μm with 1.5-W nearly diffraction-limited power, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 758-760
[58] High-power high-brightness GaInAsSb–AlGaAsSb tapered laser arrays with anamorphic collimating lenses emitting at 2.05 μm, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 1223-1225
[59] Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 1913-1915
[60] GaInAsSb–AlGaAsSb distributed feedback lasers emitting near 2.4 μm, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 380-382
[61] Quantum cascade lasers: the quantum technology for semiconductor lasers in the mid-far-infrared, C. R. Physique, Volume 4 (2003), pp. 639-648
[62] High performances quantum cascade lasers and their applications (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003, pp. 61-96
[63] New frontiers in quantum cascade lasers and applications, IEEE J. Sel. Topics Quantum Electron., Volume 6 (2000), pp. 931-947
[64] Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers, J. Appl. Phys., Volume 99 (2006), p. 123108
[65] High-power (
[66] High-power spatial singlemode quantum cascade lasers at 8.9 μm, Electron. Lett., Volume 41 (2005), pp. 418-419
[67] Continuous wave operation of a 9.3 μm quantum cascade laser on Peltier cooler, Appl. Phys. Lett., Volume 78 (2001), pp. 1964-1966
[68] High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature, Appl. Phys. Lett., Volume 83 (2003), pp. 2503-2505
[69] Cavity-length effects of high-temperature high-power continuous-wave characteristics in quantum-cascade lasers, Appl. Phys. Lett., Volume 83 (2003), pp. 5136-5138
[70] S. Blaser, High power and single frequency quantum cascade lasers for chemical sensing, in: 4th Workshop on Quantum Cascade Lasers, Technology and Applications, Freiburg, Germany, 2005
[71] Continuous-wave operation of
[72] High-power continuous-wave operation of quantum-cascade lasers up to 60 °C, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 747-749
[73] High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers, Appl. Phys. Lett., Volume 84 (2004), pp. 314-316
[74] Short wavelength (
[75] Beam steering in high-power CW quantum-cascade lasers, IEEE J. Quantum Electron., Volume 41 (2005), pp. 833-841
[76] High-power room temperature emission quantum cascade lasers at
[77] Quantum-cascade lasers operating in continuous-wave mode above 90 °C at
[78] High-power
[79] High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K, Appl. Phys. Lett., Volume 88 (2006), p. 201115
[80] Temperature dependent characteristics of
[81] Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies, Appl. Phys. Lett., Volume 89 (2006), p. 141116
[82] High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm, Appl. Phys. Lett., Volume 90 (2007), p. 151115
[83] Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser, Opt. Lett., Volume 30 (2006), pp. 2584-2587
[84] High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings, Appl. Phys. Lett., Volume 89 (2006), p. 201117
[85] Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives, Appl. Phys. B, Volume 85 (2006), pp. 251-256
[86] Mid-infrared optical parametric generator with extra-wide (3–19 μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells, J. Opt. Soc. Am. B, Volume 16 (1999), pp. 1579-1586
[87] Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2102-2116
[88] Optical parametric oscillation with intracavity difference-frequency mixing, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2268-2273
[89] Pulsed optical parametric oscillators with intracavity optical parametric amplification: a critical study, Appl. Phys. B, Volume 86 (2007), pp. 633-642
[90] Periodically poled LiNbO3 optical parametric oscillator with intracavity difference frequency mixing (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 245-248
[91] Dual-cavity doubly resonant optical parametric oscillators: demonstration of pulsed single-mode operation, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 1716-1729
[92] Mid-infrared high-resolution absorption spectroscopy by use of a semimonolithic entangled-cavity optical parametric oscillator, Opt. Lett., Volume 29 (2004), pp. 2887-2889
[93] Mid-IR entangled-cavity doubly resonant OPO pumped by a micro-laser, Conference on Lasers and Electro-Optics, Optical Society of America, 2007 (Technical Digest, paper CThL6)
[94] Mid-IR entangled-cavity doubly resonant OPO pumped by a micro-laser, Conference on Lasers and Electro-Optics, Optical Society of America, 2007 (Technical Digest, paper CThL6)
[95] High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a
[96] High-energy narrow-linewidth tunable source in the mid infrared (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 269-272
[97] 52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device, Opt. Lett., Volume 31 (2006), pp. 3149-3151
[98] Difference frequency generation in a ZnGeP2 crystal pumped by a large aperture periodically poled MgO:LiNbO3 optical parametric system, Advanced Solid-State Photonics 2007, The Optical Society of America, Washington, 2007 (Technical Digest, MB8)
[99] ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source, Opt. Lett., Volume 31 (2006), pp. 1878-1880
[100] High-energy mid-IR source based on two-stage conversion from 1.06 μm (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 417-422
[101] Recent developments in scaling output energy from erbium-based lasers and their uses as pump sources for MWIR & LWIR OPOs, Laser and Electro-Optics Society Annual Meeting 2004 Conference Proceedings, vol. 2, IEEE, 2004, pp. 805-806
[102] Refinements and additional characterization of an 8–12 μm tandem OPO design (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 525-528
[103] R.K. Shori, O.M. Stafsudd, N.S. Prasad, G. Catella, High energy AgGaSe2 optical parametric oscillator operating in 5.7–7 μm region, in: Nonlinear Optics: Materials, Fundamentals, and Applications, 2000, pp. 179–181, Technical Digest
[104] Tunable output around 8 μm from a single step AgGaS2 OPO pumped at 1.064 μm (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 282-284
[105] 2.05-μm-laser-pumped orientation-patterned gallium arsenide (OPGaAs) OPO, Conference on Lasers and Electro-Optics, Optical Society of America, 2005 (Technical Digest, paper CThQ4)
[106] P.G. Schunemann, Advances in NLO crystals for infrared parametric sources, Oral presentation given at Journées Scientifiques de l'ONERA (2007)
[107] Kilohertz AgGaSe2 optical parametric oscillator pumped at 2 μm, Opt. Lett., Volume 18 (1993), pp. 1068-1070
[108] ZnGeP2 optical parametric oscillator with 3.8–12.4 μm tunability, Opt. Lett., Volume 25 (2000), pp. 841-843
[109] Tunable 7–12 μm optical parametric oscillator using a Cr,Er:YSGG laser to pump CdSe and ZnGeP2 crystals, Opt. Lett., Volume 22 (1997), pp. 597-599
[110] Multi-wavelength, 1.5–10 μm tunable, tandem OPO (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 548-553
[111] Optical parametric oscillation in quasi-phase-matched GaAs, Opt. Lett., Volume 29 (2004), pp. 1912-1914
[112] Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs, Appl. Phys. B, Volume 85 (2006), pp. 199-206
- Enhanced the quantum efficiency of Tm3+ ∼2 μm laser in crystal through an energy transfer process of 3H5 level, Ceramics International, Volume 51 (2025) no. 1, p. 716 | DOI:10.1016/j.ceramint.2024.11.053
- Enhancing the 2.7 μm fluorescence emission intensity of Er3+-doped KBa0.94Ca0.06Y(MoO4)3 laser crystal via Nd3+ sensitization and deactivation mechanisms, Ceramics International, Volume 51 (2025) no. 8, p. 9947 | DOI:10.1016/j.ceramint.2024.12.427
- Tm,Ho:GdVO4 crystal as saturable absorber for the passively Q-switched Tm:YAP laser, Infrared Physics Technology, Volume 147 (2025), p. 105797 | DOI:10.1016/j.infrared.2025.105797
- Yb:Sc2O3 Transparent Ceramics Fabricated from Co-precipitated Nano-powders: Microstructure and Optical Property, Journal of Inorganic Materials, Volume 40 (2025) no. 2, p. 215 | DOI:10.15541/jim20240322
- The single-cycle biphotons generated by SPDC in chirped QPM PPKTP crystal, Journal of Nonlinear Optical Physics Materials, Volume 34 (2025) no. 05 | DOI:10.1142/s0218863524500061
- Yb3+, Ho3+, and Er3+ Co-doped Na5Y(MoO4)4 phosphors: Synthesis, characterization, and application potential in up-conversion laser technology, Optical Materials, Volume 159 (2025), p. 116539 | DOI:10.1016/j.optmat.2024.116539
- All-solid-state continuous-wave mode-locked Er:Lu2O3 laser at 3 µm, Optics Laser Technology, Volume 181 (2025), p. 111787 | DOI:10.1016/j.optlastec.2024.111787
- All-fiber 2 μm high-order-mode light-source based on reconfigurable mode conversion, Optics Laser Technology, Volume 181 (2025), p. 111961 | DOI:10.1016/j.optlastec.2024.111961
- Near diffraction-limited in-band pumped Ho:YLF composite thin disk laser at 2 μm, Optics Express, Volume 33 (2025) no. 4, p. 7569 | DOI:10.1364/oe.553246
- Chaotic dynamics in passively Q-switched Tm:LiYF4 laser operating at 2.3 μm on the 3H4 → 3H5 transition, APL Photonics, Volume 9 (2024) no. 9 | DOI:10.1063/5.0220220
- 基于超快光纤光源的脉冲内差频产生中红外激光的研究进展(特邀), Acta Optica Sinica, Volume 44 (2024) no. 17, p. 1732013 | DOI:10.3788/aos241225
- Eye-safe broadband emission in Tm3+/Ho3+ co-doped multi-ring profile silica optical fiber fabricated by MCVD-CDT technology, Ceramics International (2024) | DOI:10.1016/j.ceramint.2024.12.354
- Efficient energy transfer between Er and Dy achieved in perfluoride glass ceramics by tailoring crystallization characteristics, Ceramics International, Volume 50 (2024) no. 9, p. 14794 | DOI:10.1016/j.ceramint.2024.01.393
- Growth, structure and spectroscopic properties investigation on a novel Tm3+-doped disordered Ca(GdxY1-x)Al3O7 hybrid melilite crystal, Journal of Alloys and Compounds, Volume 1007 (2024), p. 176298 | DOI:10.1016/j.jallcom.2024.176298
- Spectroscopic investigations of Tm3+ doped CdF2 single crystals and infrared laser potentialities, Journal of Luminescence, Volume 265 (2024), p. 120237 | DOI:10.1016/j.jlumin.2023.120237
- Crystal growth and spectroscopic analysis of Ho,Pr:BaF2 crystal for 3 μm mid-infrared emission, Journal of Luminescence, Volume 275 (2024), p. 120743 | DOI:10.1016/j.jlumin.2024.120743
- La3Ga5SiO14 electro-optically cavity-dumped TM : YAP laser, Journal of Russian Laser Research, Volume 45 (2024) no. 4, p. 483 | DOI:10.1007/s10946-024-10236-z
- , Laser Communication and Propagation through the Atmosphere and Oceans XIII (2024), p. 13 | DOI:10.1117/12.3028484
- Nonlinear Optical Response of Au/CsPbI3 Quantum Dots and Its Laser Modulation Characteristics at 2.7 μm, Micromachines, Volume 15 (2024) no. 8, p. 1043 | DOI:10.3390/mi15081043
- , Nonlinear Frequency Generation and Conversion: Materials and Devices XXIII (2024), p. 35 | DOI:10.1117/12.3000718
- Enhanced 2.8 μm emission of Ho,Pr:CaYAlO4 crystal, Optical Materials, Volume 152 (2024), p. 115407 | DOI:10.1016/j.optmat.2024.115407
- Influence of Pr3+ co-doping on the luminescent properties of CGA:2 at. | DOI:10.1016/j.optmat.2024.116000
- 2-W Ho:LaF3 laser intracavity pumped with a Tm:YLF laser, Optical Materials Express, Volume 14 (2024) no. 7, p. 1749 | DOI:10.1364/ome.525463
- WSe2/BN heterostructure as saturable absorber for a diode-pumped passively Q-switched 2 µm solid-state laser, Optics Express, Volume 32 (2024) no. 3, p. 3688 | DOI:10.1364/oe.509296
- Watt-level output power and near-diffraction-limit beam quality mid-infrared Ho:GdVO4 self-Raman laser at 2.5 µm, Optics Express, Volume 32 (2024) no. 6, p. 10479 | DOI:10.1364/oe.517632
- High peak power passively Q-switched Tm:YAP solid-state laser with Cr2+:ZnSe and Cr2+:ZnS saturable absorber, Physica B: Condensed Matter, Volume 685 (2024), p. 416003 | DOI:10.1016/j.physb.2024.416003
- Output characteristics of an actively Q-switched Tm:GdScO3 slab laser at 2 μm band, Physica Scripta, Volume 99 (2024) no. 10, p. 105542 | DOI:10.1088/1402-4896/ad770c
- Optimization of Pump Pulse Duration and Cr:ZnSe Crystal Length for Efficient Generation of Tunable Mid-IR Laser Radiation Pumped by Laser Diode at Room Temperature, Physics of Wave Phenomena, Volume 32 (2024) no. 4, p. 257 | DOI:10.3103/s1541308x24700249
- Mid-Infrared light emitters based on black phosphorus and its alloys, 2D Excitonic Materials and Devices, Volume 112 (2023), p. 219 | DOI:10.1016/bs.semsem.2023.09.006
- Van der Waals Heterostructure Mid-Infrared Emitters with Electrically Controllable Polarization States and Spectral Characteristics, ACS Nano, Volume 17 (2023) no. 11, p. 10181 | DOI:10.1021/acsnano.3c00277
- Lipid Analysis by Mass Spectrometry coupled with Laser Light, Analysis Sensing, Volume 3 (2023) no. 6 | DOI:10.1002/anse.202200103
- Stimulated vibrational–rotational Raman scattering of hydrogen pumped at a 1064-nm laser, Applied Optics, Volume 62 (2023) no. 5, p. 1274 | DOI:10.1364/ao.478969
- Cryogenic Tm:LiYF4 laser around 2 µm, Applied Physics B, Volume 129 (2023) no. 3 | DOI:10.1007/s00340-023-07970-8
- Fabrication and characterization of tapered photonic crystal fiber for broadband 2 µm: four-wave mixing-based fibered OPCPA, Applied Physics B, Volume 129 (2023) no. 5 | DOI:10.1007/s00340-023-08012-z
- Stokes linewidth narrowing by stimulated Brillouin scattering in liquid media, Applied Physics Express, Volume 16 (2023) no. 1, p. 012014 | DOI:10.35848/1882-0786/acb0af
- A Study of PbF2 Nanoparticles Crystallization Mechanism in Mixed Oxyde-Fluoride Glasses, Ceramics, Volume 6 (2023) no. 3, p. 1508 | DOI:10.3390/ceramics6030093
- 2637.5 nm Mid-infrared SrWO4 Raman laser intracavity-pumped by an actively Q-switched Ho:YAG laser, Infrared Physics Technology, Volume 134 (2023), p. 104875 | DOI:10.1016/j.infrared.2023.104875
- Influence of Er3+ concentration in Er:GGAG crystal on spectroscopic and laser properties, Journal of Alloys and Compounds, Volume 941 (2023), p. 168964 | DOI:10.1016/j.jallcom.2023.168964
- Growth and spectroscopic properties investigation of Er:LuYAG and Er/Eu:LuYAG single crystal fibers used in mid-infrared lasers, Journal of Alloys and Compounds, Volume 944 (2023), p. 169214 | DOI:10.1016/j.jallcom.2023.169214
- Crystal growth and spectroscopic analysis of Ho,Eu:GdScO3 crystal for 3 μm mid-infrared emission, Journal of Luminescence, Volume 254 (2023), p. 119515 | DOI:10.1016/j.jlumin.2022.119515
- Growth, spectroscopy and CW laser operation of Ho3+ doped CaY0.9Gd0.1AlO4 single crystal, Journal of Luminescence, Volume 255 (2023), p. 119594 | DOI:10.1016/j.jlumin.2022.119594
- Singly Ho3+-doped tantalum tellurite glass and optical fiber for 2 μm fiber lasers, Journal of Non-Crystalline Solids, Volume 607 (2023), p. 122239 | DOI:10.1016/j.jnoncrysol.2023.122239
- 中红外激光器研究进展, Laser Optoelectronics Progress, Volume 60 (2023) no. 17, p. 1700006 | DOI:10.3788/lop220922
- Preliminary simulations of SISSI infrared beamline at Elettra 2.0 diffraction limited storage ring, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 545 (2023), p. 165150 | DOI:10.1016/j.nimb.2023.165150
- Fabrication of Er:SrF2 transparent ceramics by air pre-sintering and hot isostatic pressing, Optical Materials, Volume 142 (2023), p. 114009 | DOI:10.1016/j.optmat.2023.114009
- Room-temperature laser operation at 1.8 μm in Tm:GdVO4 waveguides, Optical Materials, Volume 145 (2023), p. 114505 | DOI:10.1016/j.optmat.2023.114505
- Impact of Tm3+/Ho3+ co-dopded on structure and spectroscopic of NaY0.1Gd0.9(WO4)2 crystal, Optical Materials, Volume 146 (2023), p. 114526 | DOI:10.1016/j.optmat.2023.114526
- Efficient self-Q-switched Tm:YAP pulse laser with a high output power, Optics Laser Technology, Volume 161 (2023), p. 109207 | DOI:10.1016/j.optlastec.2023.109207
- High-energy parametric oscillator and amplifier pulsed light source at 2-µm, Optics Express, Volume 31 (2023) no. 15, p. 24142 | DOI:10.1364/oe.494082
- Thermal, spectroscopy and optimized ∼3 µm CW laser properties for Ho,Pr:YAP crystal, Optics Express, Volume 31 (2023) no. 22, p. 36429 | DOI:10.1364/oe.504648
- Dual-wavelength passively Q-switched Ho:GdVO4 self-Raman laser operating at 2473 nm and 2520 nm, Optics Letters, Volume 48 (2023) no. 13, p. 3495 | DOI:10.1364/ol.496472
- Kerr-lens mode-locked 49-fs Tm3+:YScO3 single-crystal laser at 2.1 µm, Optics Letters, Volume 48 (2023) no. 16, p. 4221 | DOI:10.1364/ol.497847
- Two-mJ level, high-energy all-passive KGW/Tm:YLF Raman laser, Optics Letters, Volume 48 (2023) no. 17, p. 4444 | DOI:10.1364/ol.495888
- Fiber Laser Driven Three-Micron Source Development Based on Difference Frequency Generation, Optoelectronics, Instrumentation and Data Processing, Volume 59 (2023) no. 1, p. 18 | DOI:10.3103/s8756699023010119
- Watt-Level Diode-End-Pumped Self-Mode-Locked Tm,Ho:LLF Laser, Photonics, Volume 10 (2023) no. 10, p. 1133 | DOI:10.3390/photonics10101133
- High-power distributed feedback lasers based on InP corrugated sidewalls at λ∼2 μm, Photonics Research, Volume 11 (2023) no. 8, p. 1390 | DOI:10.1364/prj.484520
- Electronic and optical properties of thiogermanate AgGaGeS4: theory and experiment, RSC Advances, Volume 13 (2023) no. 2, p. 881 | DOI:10.1039/d2ra07639j
- , Solid State Lasers XXXII: Technology and Devices (2023), p. 41 | DOI:10.1117/12.2647227
- , 22nd Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics (2022), p. 3 | DOI:10.1117/12.2659160
- Selective Phonon Stimulation Mechanism to Tune Thermal Transport, ACS Omega, Volume 7 (2022) no. 15, p. 12787 | DOI:10.1021/acsomega.1c07364
- Room-temperature Continuous-Wave Upconversion White Microlaser Using a Rare-earth-Doped Microcavity, ACS Photonics, Volume 9 (2022) no. 9, p. 2956 | DOI:10.1021/acsphotonics.2c00379
- , Advanced Lasers, High-Power Lasers, and Applications XIII (2022), p. 34 | DOI:10.1117/12.2641608
- Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity, Advanced Photonics, Volume 4 (2022) no. 04 | DOI:10.1117/1.ap.4.4.046003
- Multipass lock-in thermography for the study of optical coating absorption, Applied Optics, Volume 61 (2022) no. 4, p. 978 | DOI:10.1364/ao.445045
- , Conference on Lasers and Electro-Optics (2022), p. SM5L.6 | DOI:10.1364/cleo_si.2022.sm5l.6
- MIL-68(Al) and MIL-68(Fe) as broadband optical modulators for Q-switching fiber lasers operating at 2 and 2.9 μm, Frontiers in Physics, Volume 10 (2022) | DOI:10.3389/fphy.2022.1066166
- High Power and Efficient Operation of Tm:YAG Ceramic Laser Resonantly Pumped at 1620 nm, IEEE Photonics Journal, Volume 14 (2022) no. 1, p. 1 | DOI:10.1109/jphot.2021.3129811
- High power self-Q-switched Tm:YAP solid state laser based on the ground state reabsorption, Infrared Physics Technology, Volume 123 (2022), p. 104117 | DOI:10.1016/j.infrared.2022.104117
- Crystal growth and spectroscopic analysis of Ho:Lu2O3 crystal for mid-infrared emission, Journal of Luminescence, Volume 251 (2022), p. 119192 | DOI:10.1016/j.jlumin.2022.119192
- Highly thermostable fluoride nanocrystal-in-glass composites (NGCs) for mid-infrared emission, Journal of Materials Chemistry C, Volume 10 (2022) no. 26, p. 9882 | DOI:10.1039/d2tc01668k
- High-beam-quality 2 μm tunable Tm:GdScO3 laser pumped by a 793 nm laser diode, Laser Physics Letters, Volume 19 (2022) no. 11, p. 115801 | DOI:10.1088/1612-202x/ac92e0
- Investigation of Nonlinear Optical Modulation Characteristics of MXene VCrC for Pulsed Lasers, Molecules, Volume 27 (2022) no. 3, p. 759 | DOI:10.3390/molecules27030759
- , Optica Advanced Photonics Congress 2022 (2022), p. AW4A.3 | DOI:10.1364/assl.2022.aw4a.3
- Fabrication and characterizations of Tm:Lu2O3 transparent ceramics for 2 μm laser applications, Optical Materials, Volume 131 (2022), p. 112705 | DOI:10.1016/j.optmat.2022.112705
- Crystal growth and spectral properties of Ho:Sc2O3, Optical Materials Express, Volume 12 (2022) no. 12, p. 4556 | DOI:10.1364/ome.475072
- Ultra-broadband emission in Er3+/Tm3+/Ho3+ triply-doped germanate glass and double-clad optical fiber, Optical Materials Express, Volume 12 (2022) no. 6, p. 2332 | DOI:10.1364/ome.462653
- Ultrafast Tm:CaYAlO4 laser with pulse regulation and saturation parameters evolution in the 2 μm water absorption band, Optics Laser Technology, Volume 152 (2022), p. 108096 | DOI:10.1016/j.optlastec.2022.108096
- Efficient diode-pumped all-solid-state ultrafast 2.3 µm thulium-doped yttrium lithium fluoride laser, Optics Letters, Volume 47 (2022) no. 16, p. 4080 | DOI:10.1364/ol.466164
- Diode-pumped SESAM mode-locked Tm:Sc2SiO5 laser, Optics Letters, Volume 47 (2022) no. 17, p. 4495 | DOI:10.1364/ol.472091
- Cascade MIR Ho:YLF laser at 2.1 µm and 2.9 µm, Optics Letters, Volume 47 (2022) no. 21, p. 5642 | DOI:10.1364/ol.470997
- Simple approach to broadband mid-infrared pulse generation with a mode-locked Yb-doped fiber laser, Optics Letters, Volume 47 (2022) no. 7, p. 1790 | DOI:10.1364/ol.450921
- Dual effects on Ho3+ ∼4.0 μm emission by Nd3+ ions in (Y,Gd)AlO3 crystal, Optics Letters, Volume 47 (2022) no. 8, p. 2121 | DOI:10.1364/ol.457047
- , 2021 IEEE Photonics Conference (IPC) (2021), p. 1 | DOI:10.1109/ipc48725.2021.9592898
- Motivation, A New Generation of Ultrafast Oscillators for Mid-Infrared Applications (2021), p. 1 | DOI:10.1007/978-3-030-89754-3_1
- Effect of Tm3+ concentration on structure, defect, and spectral properties of Tm: YAP crystals, Applied Physics A, Volume 127 (2021) no. 9 | DOI:10.1007/s00339-021-04875-1
- Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability, Atmospheric Measurement Techniques, Volume 14 (2021) no. 10, p. 6675 | DOI:10.5194/amt-14-6675-2021
- Energy Transfer and Cross-Relaxation Induced Efficient 2.78 μm Emission in Er3+/Tm3+: PbF2 mid-Infrared Laser Crystal, Crystals, Volume 11 (2021) no. 9, p. 1024 | DOI:10.3390/cryst11091024
- High-Power, Continuous-Wave, Fiber-Pumped Difference-Frequency-Generation at 2.26 μm, IEEE Photonics Technology Letters, Volume 33 (2021) no. 12, p. 627 | DOI:10.1109/lpt.2021.3081804
- Bi32Cd3P10O76: a new congruently melting nonlinear optical crystal with a large SHG response and a wide transparent region, Inorganic Chemistry Frontiers, Volume 8 (2021) no. 2, p. 344 | DOI:10.1039/d0qi01071e
- Growth and spectroscopic analyses of Yb,Ho:CaYAlO4 disordered crystal for 3 μm mid-infrared laser, Journal of Luminescence, Volume 236 (2021), p. 118067 | DOI:10.1016/j.jlumin.2021.118067
- Growth and spectroscopy of Er: LuYO3 single crystal, Journal of Luminescence, Volume 239 (2021), p. 118347 | DOI:10.1016/j.jlumin.2021.118347
- Lasing action in Fano-resonant superlattice metagratings, Journal of Physics D: Applied Physics, Volume 54 (2021) no. 34, p. 345101 | DOI:10.1088/1361-6463/ac055a
- Extended analysis of the free ion spectrum of Er3+(Er IV), Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 272 (2021), p. 107796 | DOI:10.1016/j.jqsrt.2021.107796
- Research progress and prospects of rare-earth doped sesquioxide laser ceramics, Journal of the European Ceramic Society, Volume 41 (2021) no. 7, p. 3895 | DOI:10.1016/j.jeurceramsoc.2021.02.026
- Compact diode-pumped CW and Q-switched 2.8 µm Er:YLF laser, Journal of the Optical Society of America B, Volume 38 (2021) no. 8, p. B26 | DOI:10.1364/josab.424965
- Spectroscopy and 2.8 μm laser operation of Er3+-doped (Lu, Y, Sc)-mixed garnet crystal, Optical Materials, Volume 117 (2021), p. 111180 | DOI:10.1016/j.optmat.2021.111180
- Active Q-switching operation of a Tm:SrF2 single crystal fiber laser near 2 µm, Optical Materials Express, Volume 11 (2021) no. 9, p. 2877 | DOI:10.1364/ome.436045
- Widely tunable, narrow bandwidth, mJ level Tm:YAP laser with YAG Etalons, Optics Laser Technology, Volume 136 (2021), p. 106710 | DOI:10.1016/j.optlastec.2020.106710
- 2.08μmQ-switched holmium fiber laser using niobium carbide-polyvinyl alcohol (Nb2C-PVA) as a saturable absorber, Optics Communications, Volume 490 (2021), p. 126888 | DOI:10.1016/j.optcom.2021.126888
- Full optical SESAM characterization methods in the 1.9 to 3-µm wavelength regime, Optics Express, Volume 29 (2021) no. 5, p. 6647 | DOI:10.1364/oe.418336
- Mid-infrared soliton self-frequency shift in chalcogenide glass, Optics Letters, Volume 46 (2021) no. 21, p. 5513 | DOI:10.1364/ol.443848
- An Electro-Optic, Actively Q-Switched Tm:YAP/KGW External-Cavity Raman Laser at 2273 nm and 2344 nm, Photonics, Volume 8 (2021) no. 11, p. 519 | DOI:10.3390/photonics8110519
- Midinfrared Tunable Laser with Noncritical Frequency Matching in Box Resonator Geometry, Physical Review Letters, Volume 127 (2021) no. 21 | DOI:10.1103/physrevlett.127.213902
- High-power AlGaInAs/InP semiconductor lasers with an ultra-narrow waveguide emitting in the spectral range 1.9−2.0 μm, Quantum Electronics, Volume 51 (2021) no. 10, p. 909 | DOI:10.1070/qel17635
- Broadband nonlinear optical response of graphdiyne for mid-infrared solid-state lasers, Science China Physics, Mechanics Astronomy, Volume 64 (2021) no. 9 | DOI:10.1007/s11433-021-1720-3
- Review of Dissolved CO and H2 Measurement Methods for Syngas Fermentation, Sensors, Volume 21 (2021) no. 6, p. 2165 | DOI:10.3390/s21062165
- Fe:ZnSe Lasers Pumped by Mid-Infrared Er:ZBLAN Fiber Lasers, The Review of Laser Engineering, Volume 49 (2021) no. 7, p. 402 | DOI:10.2184/lsj.49.7_402
- AlN nonlinear optics and integrated photonics, Ultrawide Bandgap Semiconductors, Volume 107 (2021), p. 223 | DOI:10.1016/bs.semsem.2021.04.006
- Infrared ion spectroscopy: New opportunities for small-molecule identification in mass spectrometry - A tutorial perspective, Analytica Chimica Acta, Volume 1093 (2020), p. 1 | DOI:10.1016/j.aca.2019.10.043
- Spectroscopy and diode-pumped continuous-wave laser operation of Tm:Y2O3 transparent ceramic at cryogenic temperatures, Applied Physics B, Volume 126 (2020) no. 3 | DOI:10.1007/s00340-020-7385-7
- Self-Q-switched and broad wavelength-tunable lasing in Tm3+-doped CaF2 single-crystal fiber, Applied Physics Express, Volume 13 (2020) no. 10, p. 102003 | DOI:10.35848/1882-0786/abb91c
- High quality-factor Kerr-lens mode-locked Tm:Sc2O3 single crystal laser with anomalous spectral broadening, Applied Physics Express, Volume 13 (2020) no. 5, p. 052007 | DOI:10.35848/1882-0786/ab88c3
- Pulsed Tm:Ca(Gd,Lu)AlO4 laser doubly Q-switched by acousto-optic modulator and CVD-grown tungsten disulfide (WS2), Infrared Physics Technology, Volume 109 (2020), p. 103381 | DOI:10.1016/j.infrared.2020.103381
- Growth and spectra of Tm3+ doped LuYO3 single crystal for 2 μm lasers, Infrared Physics Technology, Volume 109 (2020), p. 103431 | DOI:10.1016/j.infrared.2020.103431
- Continuous-wave mode-locked Tm:YAG laser with GaAs-based SESAM, Infrared Physics Technology, Volume 111 (2020), p. 103539 | DOI:10.1016/j.infrared.2020.103539
- Nd3+ as effective sensitization and deactivation ions in Nd,Er:LaF3 crystal for the 2.7 μm lasers, Journal of Alloys and Compounds, Volume 827 (2020), p. 154268 | DOI:10.1016/j.jallcom.2020.154268
- Homogeneity characterization in AgGaGeS4, a single crystal for nonlinear mid-IR laser applications, Journal of Crystal Growth, Volume 548 (2020), p. 125814 | DOI:10.1016/j.jcrysgro.2020.125814
- Er:CaF2 single-crystal fiber Q-switched laser with diode pumping in the mid-infrared region, Journal of Luminescence, Volume 227 (2020), p. 117519 | DOI:10.1016/j.jlumin.2020.117519
- Enhanced 2.86 μm emission from a Ho,Pr:CaGdAlO4 crystal, Journal of Luminescence, Volume 228 (2020), p. 117620 | DOI:10.1016/j.jlumin.2020.117620
- Spectroscopic properties of Er3+/Yb3+/Ho3+:CaLaGa3O7 and Er3+/Yb3+/Eu3+:CaLaGa3O7 crystals used in mid-infrared lasers, Laser Physics Letters, Volume 17 (2020) no. 6, p. 065703 | DOI:10.1088/1612-202x/ab8a4e
- , OSA High-brightness Sources and Light-driven Interactions Congress 2020 (EUVXRAY, HILAS, MICS) (2020), p. JW1A.30 | DOI:10.1364/euvxray.2020.jw1a.30
- Dual-loss-modulated Q-switched Tm:Ca(Gd,Lu)AlO4 laser using AOM and a MoS2 nanosheet, Optical Materials Express, Volume 10 (2020) no. 3, p. 752 | DOI:10.1364/ome.383015
- Few-layered α-Fe2O3 nanoflake saturable absorber for stable MIR pulse generation, Optical Materials Express, Volume 10 (2020) no. 9, p. 2313 | DOI:10.1364/ome.404316
- Q-switched Thulium-doped fiber laser at 1860 nm and 1930 nm using a Holmium-doped fiber as an amplified spontaneous emission filter, Optics Laser Technology, Volume 123 (2020), p. 105908 | DOI:10.1016/j.optlastec.2019.105908
- Growth, spectroscopic features and efficient 2 μm continuous-wave laser output of a Tm3+: Gd0.1Y0.9AlO3 disordered crystal, Optics Laser Technology, Volume 131 (2020), p. 106421 | DOI:10.1016/j.optlastec.2020.106421
- Extended cavity quantum cascade laser with cavity resonator integrated grating filter, Optics Express, Volume 28 (2020) no. 4, p. 4801 | DOI:10.1364/oe.385740
- Efficient all-solid-state passively Q-switched SWIR Tm:YAP/KGW Raman laser, Optics Letters, Volume 45 (2020) no. 19, p. 5409 | DOI:10.1364/ol.401833
- High-power mid-infrared picosecond pulse bunch generation through difference frequency generation, Optics Letters, Volume 45 (2020) no. 2, p. 383 | DOI:10.1364/ol.380325
- Mid-infrared Q-switch performance of ZrC, Photonics Research, Volume 8 (2020) no. 12, p. 1857 | DOI:10.1364/prj.401168
- Er-doped crystalline active media for 3 μm diode-pumped lasers, Progress in Quantum Electronics, Volume 74 (2020), p. 100276 | DOI:10.1016/j.pquantelec.2020.100276
- Investigation of continuum generation in the non-zero dispersion-shifted fiber pumped by femtosecond nanojoule pulses in 1450–1800 nm spectral range, Results in Physics, Volume 17 (2020), p. 103064 | DOI:10.1016/j.rinp.2020.103064
- Microscopy with undetected photons in the mid-infrared, Science Advances, Volume 6 (2020) no. 42 | DOI:10.1126/sciadv.abd0264
- A Compact Mid-Infrared Spectroscopy System for Healthcare Applications Based on a Wavelength-Swept, Pulsed Quantum Cascade Laser, Sensors, Volume 20 (2020) no. 12, p. 3438 | DOI:10.3390/s20123438
- , 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1 | DOI:10.1109/cleoe-eqec.2019.8872875
- , 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1 | DOI:10.1109/cleoe-eqec.2019.8871634
- Enhanced luminescence at 2.88 and 2.04 μm from Ho3+/Yb3+ codoped low phonon energy TeO2–TiO2–La2O3 glass, AIP Advances, Volume 9 (2019) no. 4 | DOI:10.1063/1.5054190
- Rb4Li2TiOGe4O12: A Titanyl Nonlinear Optical Material with the Widest Transparency Range, Angewandte Chemie, Volume 131 (2019) no. 50, p. 18425 | DOI:10.1002/ange.201911324
- Rb4Li2TiOGe4O12: A Titanyl Nonlinear Optical Material with the Widest Transparency Range, Angewandte Chemie International Edition, Volume 58 (2019) no. 50, p. 18257 | DOI:10.1002/anie.201911324
- Mid-infrared Er:CaF2–SrF2 bulk laser Q-switched by MXene Ti3C2T x absorber, Applied Physics Express, Volume 12 (2019) no. 8, p. 085506 | DOI:10.7567/1882-0786/ab31b9
- Spectroscopic properties of antimony modified germanate glass doped with Eu3+ ions, Ceramics International, Volume 45 (2019) no. 18, p. 24811 | DOI:10.1016/j.ceramint.2019.08.223
- , Conference on Lasers and Electro-Optics (2019), p. STh1E.2 | DOI:10.1364/cleo_si.2019.sth1e.2
- , High-Power, High-Energy, and High-Intensity Laser Technology IV (2019), p. 10 | DOI:10.1117/12.2507200
- High Energy Noise-Like Pulse Generation from a Mode-Locked Thulium-Doped Fiber Laser at 1.7 μm, IEEE Photonics Journal, Volume 11 (2019) no. 6, p. 1 | DOI:10.1109/jphot.2019.2941324
- InP-Based Surface-Emitting Distributed Feedback Lasers Operating at 2004 nm, IEEE Photonics Technology Letters, Volume 31 (2019) no. 21, p. 1701 | DOI:10.1109/lpt.2019.2942643
- Improvement of 2-μm Thulium-Doped Fiber Lasers via ASE Suppression Using All-Solid Low-Pass Photonic Bandgap Fibers, Journal of Lightwave Technology, Volume 37 (2019) no. 22, p. 5686 | DOI:10.1109/jlt.2019.2930014
- Spectroscopic analyses and laser properties simulation of Er/Yb, Er/Nd, Er/Dy: BaLaGa3O7 crystals, Journal of Luminescence, Volume 208 (2019), p. 259 | DOI:10.1016/j.jlumin.2018.12.061
- Nd3+ as effective sensitizing and deactivating ions for the 2.87 µm lasers in Ho3+ doped LaF3 crystal, Journal of Luminescence, Volume 208 (2019), p. 63 | DOI:10.1016/j.jlumin.2018.11.059
- Growth, thermal conductivity, spectra, and 2 µm continuous-wave characteristics of Tm3+, Ho3+ co-doped LaF3 crystal, Journal of Luminescence, Volume 210 (2019), p. 142 | DOI:10.1016/j.jlumin.2019.02.003
- 2 μm emission in gallo-germanate glasses and glass fibers co-doped with Yb3+/Ho3+ and Yb3+/Tm3+/Ho3+, Journal of Luminescence, Volume 211 (2019), p. 341 | DOI:10.1016/j.jlumin.2019.03.060
- Co-precipitation synthesis, structural characterization and fluorescent analysis of Nd3+ doped Y3Al5O12 and Yb3Al5O12 nanocrystallines, Journal of Materials Science: Materials in Electronics, Volume 30 (2019) no. 3, p. 2299 | DOI:10.1007/s10854-018-0502-2
- Molybdenum tungsten disulphide (MoWS2) as a saturable absorber for a passively Q-switched thulium/holmium-codoped fibre laser, Journal of Modern Optics, Volume 66 (2019) no. 11, p. 1163 | DOI:10.1080/09500340.2019.1609612
- Broadband mid‐infrared emission from Cr2+ in crystal‐in‐glass composite glasses by Hot Uniaxial Pressing, Journal of the American Ceramic Society, Volume 102 (2019) no. 11, p. 6618 | DOI:10.1111/jace.16538
- Fabrication of double‐cladding Ho3+/Tm3+ co‐doped Bi2O3–GeO2–Ga2O3–BaF2 glass fiber and its performance in a 2.0‐μm laser, Journal of the American Ceramic Society, Volume 102 (2019) no. 8, p. 4748 | DOI:10.1111/jace.16361
- Er:Y2O3 high-repetition rate picosecond 2.7
m laser, Laser Physics Letters, Volume 16 (2019) no. 7, p. 075802 | DOI:10.1088/1612-202x/ab1918 - Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL, Nature Photonics, Volume 13 (2019) no. 12, p. 855 | DOI:10.1038/s41566-019-0518-z
- High-power, low-lateral divergence InP type-I lasers around 2 µm with tapered waveguide structures, OSA Continuum, Volume 2 (2019) no. 5, p. 1612 | DOI:10.1364/osac.2.001612
- On-chip χ(2) microring optical parametric oscillator, Optica, Volume 6 (2019) no. 10, p. 1361 | DOI:10.1364/optica.6.001361
- Frequency downconversion of low-power Raman laser using intracavity difference frequency mixing, Optical Engineering, Volume 58 (2019) no. 11, p. 1 | DOI:10.1117/1.oe.58.11.116111
- Analytical modelling of Tm-doped tellurite glass including cross-relaxation process, Optical Materials, Volume 87 (2019), p. 29 | DOI:10.1016/j.optmat.2018.06.037
- Growth, structure, and spectroscopic properties of a Tm3+, Ho3+ co-doped Lu2O3 crystal for 2.1 μm lasers, Optical Materials, Volume 96 (2019), p. 109277 | DOI:10.1016/j.optmat.2019.109277
- Tm3+/Ho3+co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 µm, Optical Materials Express, Volume 9 (2019) no. 3, p. 1450 | DOI:10.1364/ome.9.001450
- ZnGa2Se4, a nonlinear material with wide mid infrared transparency and good thermomechanical properties, Optical Materials: X, Volume 1 (2019), p. 100007 | DOI:10.1016/j.omx.2019.100007
- Two-wavelength Tm:YLF/KGW external-cavity Raman laser at 2197 nm and 2263 nm, Optics Express, Volume 27 (2019) no. 12, p. 17112 | DOI:10.1364/oe.27.017112
- 100 kW peak power external cavity diamond Raman laser at 252 μm, Optics Express, Volume 27 (2019) no. 7, p. 10296 | DOI:10.1364/oe.27.010296
- 1886-nm mode-locked and wavelength tunable Tm-doped CaF2 lasers, Optics Letters, Volume 44 (2019) no. 1, p. 134 | DOI:10.1364/ol.44.000134
- High-beam-quality, watt-level, widely tunable, mid-infrared OP-GaAs optical parametric oscillator, Optics Letters, Volume 44 (2019) no. 11, p. 2744 | DOI:10.1364/ol.44.002744
- Tm Based Solid-State Lasers—Toward High Power Tunability—A Review, Optics, Photonics and Laser Technology 2018, Volume 223 (2019), p. 93 | DOI:10.1007/978-3-030-30113-2_5
- Doubly passively Q-switched Tm:YAP laser with MoS2 and WS2 saturable absorbers at 2 μm, Optik, Volume 198 (2019), p. 163205 | DOI:10.1016/j.ijleo.2019.163205
- Wideband tunable passively Q-switched fiber laser at 28 μm using a broadband carbon nanotube saturable absorber, Photonics Research, Volume 7 (2019) no. 1, p. 14 | DOI:10.1364/prj.7.000014
- Widely tunable passively Q-switched Er3+-doped ZrF4 fiber laser in the range of 34–37 μm based on a Fe2+:ZnSe crystal, Photonics Research, Volume 7 (2019) no. 9, p. 1106 | DOI:10.1364/prj.7.001106
- Phosphor for the Near-IR and Short-Wave IR Ranges Based on a Garnet Structured Cubic Modification of Lithium–Lanthanum Niobate, Physics of the Solid State, Volume 61 (2019) no. 5, p. 874 | DOI:10.1134/s1063783419050044
- Cr:Colquiriite Lasers: Current status and challenges for further progress, Progress in Quantum Electronics, Volume 68 (2019), p. 100227 | DOI:10.1016/j.pquantelec.2019.100227
- , Silicon Photonics XIV (2019), p. 59 | DOI:10.1117/12.2509876
- , Solid State Lasers XXVIII: Technology and Devices (2019), p. 6 | DOI:10.1117/12.2508243
- Watt-level tunable narrow bandwidth Tm:YAP laser using a pair of etalons, Applied Optics, Volume 57 (2018) no. 6, p. 1468 | DOI:10.1364/ao.57.001468
- High-energy diode side-pumped Er:LiYF4laser, Applied Optics, Volume 57 (2018) no. 6, p. 1497 | DOI:10.1364/ao.57.001497
- Passively Q-switched solid-state Tm:YAG laser using topological insulator Bi2Te3 as a saturable absorber, Applied Optics, Volume 57 (2018) no. 9, p. 2020 | DOI:10.1364/ao.57.002020
- Narrowband, tunable, 2 µm optical parametric master-oscillator power amplifier with large-aperture periodically poled Rb:KTP, Applied Physics B, Volume 124 (2018) no. 6 | DOI:10.1007/s00340-018-6992-z
- , Fiber Lasers and Glass Photonics: Materials through Applications (2018), p. 133 | DOI:10.1117/12.2322626
- , Fiber Lasers and Glass Photonics: Materials through Applications (2018), p. 88 | DOI:10.1117/12.2306082
- , Frontiers in Optics / Laser Science (2018), p. JTu2A.121 | DOI:10.1364/fio.2018.jtu2a.121
- Influences of Ridge-Waveguide Shape and Width on Performances of InP-Based Coupled Ridge-Waveguide Laser Arrays, IEEE Journal of Quantum Electronics, Volume 54 (2018) no. 5, p. 1 | DOI:10.1109/jqe.2018.2860240
- Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-
- A novel crystal Tm: Lu0.8Gd0.8Y0.4SiO5 with potential for broadband tunable lasing, Infrared Physics Technology, Volume 88 (2018), p. 81 | DOI:10.1016/j.infrared.2017.11.013
- Investigation of Adhesive-free bonded Potassium Titanyl Phosphate crystal based optical parametric oscillator for generation of 2.1 µm wavelength at high repetition rate, Infrared Physics Technology, Volume 92 (2018), p. 244 | DOI:10.1016/j.infrared.2018.06.005
- Spectroscopic analyses of Tm3+/Yb3+: BaGd2(MoO4)4 crystal for mid-infrared applications, Infrared Physics Technology, Volume 94 (2018), p. 1 | DOI:10.1016/j.infrared.2018.07.016
- Sensitization and deactivation effects to Er3+ at ∼2.7 μm mid-infrared emission by Nd3+ ions in Gd0.1Y0.9AlO3 crystal, Journal of Alloys and Compounds, Volume 750 (2018), p. 147 | DOI:10.1016/j.jallcom.2018.03.391
- Generation of 320 mW at 10.20 μm based on CdSe long-wave infrared crystal, Journal of Crystal Growth, Volume 491 (2018), p. 16 | DOI:10.1016/j.jcrysgro.2018.03.012
- Benefit of Nd3+ ions to the 2.7 µm emission of Er3+: 4I11/2→4I13/2 transition in Nd,Er: CaLaGa3O7 laser crystal, Journal of Luminescence, Volume 198 (2018), p. 40 | DOI:10.1016/j.jlumin.2018.02.017
- Dual effects of Nd3+ in Nd3+/Ho3+:CaLaGa3O7 crystal on 2.86 µm emission, Journal of Luminescence, Volume 201 (2018), p. 143 | DOI:10.1016/j.jlumin.2018.04.050
- Mid-IR hyperspectral imaging for label-free histopathology and cytology, Journal of Optics, Volume 20 (2018) no. 2, p. 023002 | DOI:10.1088/2040-8986/aaa36b
- , Laser Congress 2018 (ASSL) (2018), p. ATh2A.21 | DOI:10.1364/assl.2018.ath2a.21
- , Laser Congress 2018 (ASSL) (2018), p. ATu2A.30 | DOI:10.1364/assl.2018.atu2a.30
- Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power, Laser Physics, Volume 28 (2018) no. 3, p. 035804 | DOI:10.1088/1555-6611/aa9f64
- Efficient continuous-wave, broadly tunable and passive Q-switching lasers based on a Tm3+:CaF2crystal, Laser Physics Letters, Volume 15 (2018) no. 4, p. 045803 | DOI:10.1088/1612-202x/aaa6ad
- , Laser Technology for Defense and Security XIV (2018), p. 31 | DOI:10.1117/12.2309502
- Fabrication and Sintering Behavior of Er:SrF2 Transparent Ceramics using Chemically Derived Powder, Materials, Volume 11 (2018) no. 4, p. 475 | DOI:10.3390/ma11040475
- Spectroscopic properties and rate equation model of Er doped BaLaGa 3 O 7 crystals, Materials Research Bulletin, Volume 106 (2018), p. 282 | DOI:10.1016/j.materresbull.2018.06.011
- Crystal growth and spectroscopic analysis of Tm, Ho singly-doped and Tm/Ho co-doped CaLaGa3O7 NIR laser crystals, Optical Materials, Volume 75 (2018), p. 744 | DOI:10.1016/j.optmat.2017.11.041
- Diode-pumped Er:SrF2 laser tunable at 27 μm, Optical Materials Express, Volume 8 (2018) no. 4, p. 1025 | DOI:10.1364/ome.8.001025
- Spectral and lasing characteristics of Fe:Cd1-xMnxTe (x = 01 – 076) crystals in the temperature range 77 to 300 K, Optical Materials Express, Volume 8 (2018) no. 7, p. 1708 | DOI:10.1364/ome.8.001708
- Compact self-Q-switched Tm:YLF laser at 1.91 μm, Optics Laser Technology, Volume 100 (2018), p. 103 | DOI:10.1016/j.optlastec.2017.10.001
- Actively Q-switched tunable narrow bandwidth milli-Joule level Tm:YLF laser, Optics Express, Volume 26 (2018) no. 17, p. 22135 | DOI:10.1364/oe.26.022135
- Efficient continuous-wave and passive Q-switched mode-locked Er3+ : CaF2–SrF2lasers in the mid-infrared region, Optics Letters, Volume 43 (2018) no. 10, p. 2418 | DOI:10.1364/ol.43.002418
- Line-tunable Er:GGAG laser, Optics Letters, Volume 43 (2018) no. 14, p. 3309 | DOI:10.1364/ol.43.003309
- 17 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging, Optics Letters, Volume 43 (2018) no. 23, p. 5849 | DOI:10.1364/ol.43.005849
- Ultrafast mode-locked dual-wavelength thulium-doped fiber laser using a Mach-Zehnder interferometric filter, Opto-Electronics Review, Volume 26 (2018) no. 4, p. 312 | DOI:10.1016/j.opelre.2018.10.008
- Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser, Photonics Research, Volume 6 (2018) no. 8, p. 762 | DOI:10.1364/prj.6.000762
- , Solid State Lasers XXVII: Technology and Devices (2018), p. 17 | DOI:10.1117/12.2288134
- Investigation of the aluminum oxide content on structural and optical properties of germanium glasses doped with RE ions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 201 (2018), p. 143 | DOI:10.1016/j.saa.2018.04.043
- , Volume 1892 (2017), p. 180001 | DOI:10.1063/1.5008206
- , Volume 1892 (2017), p. 180002 | DOI:10.1063/1.5008207
- Cr:ZnS saturable absorber passively Q-switched mode-locking Tm,Ho:LLF laser, Applied Optics, Volume 56 (2017) no. 11, p. 2973 | DOI:10.1364/ao.56.002973
- All-fiber multimode interferometer for the generation of a switchable multi-wavelength thulium-doped fiber laser, Applied Optics, Volume 56 (2017) no. 21, p. 5865 | DOI:10.1364/ao.56.005865
- Structures of Ge15Sb x Se85−x chalcogenide glasses affect their Raman gain performance, Applied Physics B, Volume 123 (2017) no. 10 | DOI:10.1007/s00340-017-6832-6
- Nested Cavity Optical Parametric Oscillators – A Tunable Frequency Synthesizer for Gas Sensing, Encyclopedia of Analytical Chemistry (2017), p. 1 | DOI:10.1002/9780470027318.a9560
- InfraredLIDARApplications in Atmospheric Monitoring, Encyclopedia of Analytical Chemistry (2017), p. 1 | DOI:10.1002/9780470027318.a0711.pub2
- Glass and Process Development for the Next Generation of Optical Fibers: A Review, Fibers, Volume 5 (2017) no. 1, p. 11 | DOI:10.3390/fib5010011
- 1.96-μm Tm:YAG Ceramic Laser, IEEE Photonics Journal, Volume 9 (2017) no. 6, p. 1 | DOI:10.1109/jphot.2017.2766026
- Positive influence of Tm 3+ on effective Er 3+ : 3 μm emission in fluoride glass under 980 nm excitation, Infrared Physics Technology, Volume 82 (2017), p. 120 | DOI:10.1016/j.infrared.2017.03.005
- Aluminized Film as Saturable Absorber for Generating Passive Q-Switched Pulses in the Two-Micron Region, Journal of Lightwave Technology, Volume 35 (2017) no. 12, p. 2470 | DOI:10.1109/jlt.2017.2684197
- Silicon plasmonics at midinfrared using silicon-insulator-silicon platform, Journal of Nanophotonics, Volume 11 (2017) no. 1, p. 016006 | DOI:10.1117/1.jnp.11.016006
- Pulsed fluoride fiber lasers at 3 μm [Invited], Journal of the Optical Society of America B, Volume 34 (2017) no. 3, p. A15 | DOI:10.1364/josab.34.000a15
- 2µm mode-locked thulium-doped fiber laser using Mach–Zehnder interferometer tuning capability, Laser Physics, Volume 27 (2017) no. 6, p. 065104 | DOI:10.1088/1555-6611/aa6bd8
- Bandwidth enhancement of MIR emission in Yb3+/Er3+/Dy3+triply doped fluoro-tellurite glass, Laser Physics Letters, Volume 14 (2017) no. 3, p. 035804 | DOI:10.1088/1612-202x/aa5c1b
- Preparation and investigation of Tm 3+ /Ho 3+ co-doped germanate-tellurite glass as promising materials for ultrashort pulse laser, Optical Materials, Volume 67 (2017), p. 125 | DOI:10.1016/j.optmat.2017.03.050
- 1.87 μm laser operation by 980 nm pumping in Yb,Tm:CaF2, Optical Materials, Volume 72 (2017), p. 578 | DOI:10.1016/j.optmat.2017.06.050
- Determination of reverse cross-relaxation process constant in Tm-doped glass by ^3H_4 fluorescence decay tail fitting, Optical Materials Express, Volume 7 (2017) no. 10, p. 3760 | DOI:10.1364/ome.7.003760
- 34 nm-wavelength-tunable picosecond Ho^3+/Pr^3+-codoped ZBLAN fiber laser, Optics Express, Volume 25 (2017) no. 16, p. 19170 | DOI:10.1364/oe.25.019170
- Sub-100 fs Tm:MgWO_4 laser at 2017 nm mode locked by a graphene saturable absorber, Optics Letters, Volume 42 (2017) no. 16, p. 3076 | DOI:10.1364/ol.42.003076
- Kerr-lens mode-locked Tm^3+:Sc_2O_3 single-crystal laser in-band pumped by an Er:Yb fiber MOPA at 1611 nm, Optics Letters, Volume 42 (2017) no. 16, p. 3185 | DOI:10.1364/ol.42.003185
- Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region, Photonics Research, Volume 5 (2017) no. 6, p. 583 | DOI:10.1364/prj.5.000583
- , Quantum Sensing and Nano Electronics and Photonics XIV, Volume 10111 (2017), p. 101112X | DOI:10.1117/12.2242892
- Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/srep44747
- Intense 2.7 μm emission in Er 3+ doped zinc fluoride glass, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 179 (2017), p. 42 | DOI:10.1016/j.saa.2017.02.020
- Optimization of Type-II ‘W’ shaped InGaAsP/GaAsSb nanoscale-heterostructure under electric field and temperature, Superlattices and Microstructures, Volume 112 (2017), p. 507 | DOI:10.1016/j.spmi.2017.10.007
- , Volume 1769 (2016), p. 100002 | DOI:10.1063/1.4963496
- , 2016 18th International Conference on Transparent Optical Networks (ICTON) (2016), p. 1 | DOI:10.1109/icton.2016.7550715
- , 2016 18th International Conference on Transparent Optical Networks (ICTON) (2016), p. 1 | DOI:10.1109/icton.2016.7550634
- , 2016 International Conference Laser Optics (LO) (2016), p. R1-50 | DOI:10.1109/lo.2016.7549669
- Electro-optically cavity-dumped 3 ns Tm:LuAG laser, Applied Optics, Volume 55 (2016) no. 11, p. 2848 | DOI:10.1364/ao.55.002848
- Spectroscopic properties and energy transfer mechanism in Dy3+/Tm3+ codoped fluoroaluminate glasses modified by TeO2, Ceramics International, Volume 42 (2016) no. 1, p. 132 | DOI:10.1016/j.ceramint.2015.08.031
- , Conference on Lasers and Electro-Optics (2016), p. JTu5A.32 | DOI:10.1364/cleo_at.2016.jtu5a.32
- , Conference on Lasers and Electro-Optics (2016), p. SM2P.5 | DOI:10.1364/cleo_si.2016.sm2p.5
- Widely Tunable Watt-Level Single-Frequency Tm-Doped Fiber Ring Laser as Pump for Mid-IR Frequency Generation, IEEE Photonics Journal, Volume 8 (2016) no. 3, p. 1 | DOI:10.1109/jphot.2016.2574358
- Applications of Inorganic Photonic Glasses, Inorganic Glasses for Photonics Fundamentals, Engineering, and Applications (2016), p. 261 | DOI:10.1002/9781118696088.ch7
- Broadband mid-infrared 2.8μm emission in Ho3+/Yb3+-codoped germanate glasses, Journal of Luminescence, Volume 171 (2016), p. 143 | DOI:10.1016/j.jlumin.2015.11.016
- Analysis of the free ion spectrum of Er3+(Er IV), Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 49 (2016) no. 16, p. 165002 | DOI:10.1088/0953-4075/49/16/165002
- 2.7 μm emission properties of Er3+/Yb3+/Eu3+: SrGdGa3O7 and Er3+/Yb3+/Ho3+: SrGdGa3O7 crystals, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 173 (2016), p. 7 | DOI:10.1016/j.jqsrt.2015.12.018
- Generating 2 micron continuous-wave ytterbium-doped fiber laser-based optical parametric effect, Laser Physics Letters, Volume 13 (2016) no. 10, p. 105109 | DOI:10.1088/1612-2011/13/10/105109
- , Lasers Congress 2016 (ASSL, LSC, LAC) (2016), p. AW2A.3 | DOI:10.1364/assl.2016.aw2a.3
- High-throughput realization of an infrared selective absorber/emitter by DUV microsphere projection lithography, Nanotechnology, Volume 27 (2016) no. 3, p. 035301 | DOI:10.1088/0957-4484/27/3/035301
- Effect of erbium concentration on spectroscopic properties and 279 μm laser performance of Er:CaF_2 crystals, Optical Materials Express, Volume 6 (2016) no. 2, p. 409 | DOI:10.1364/ome.6.000409
- Dual-wavelength, passively Q-switched Tm:YAP laser with black phosphorus saturable absorber, Optical Materials Express, Volume 6 (2016) no. 7, p. 2328 | DOI:10.1364/ome.6.002328
- 27 μm emission in Er^3+ doped glass ceramics containing lutetium oxyfluoride nanocrystals, Optical Materials Express, Volume 6 (2016) no. 9, p. 2759 | DOI:10.1364/ome.6.002759
- Acentric langanite La_3Ga_55Nb_05O_14 crystal: a new nonlinear crystal for the generation of mid-infrared parametric light, Optics Express, Volume 24 (2016) no. 16, p. 17603 | DOI:10.1364/oe.24.017603
- Gain-switched monolithic fiber laser with ultra-wide tuning range at 2 μm, Optics Express, Volume 24 (2016) no. 25, p. 29126 | DOI:10.1364/oe.24.029126
- Dual-wavelength Q-switched Er:SrF_2 laser with a black phosphorus absorber in the mid-infrared region, Optics Express, Volume 24 (2016) no. 26, p. 30289 | DOI:10.1364/oe.24.030289
- Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers, Optics Letters, Volume 41 (2016) no. 11, p. 2446 | DOI:10.1364/ol.41.002446
- High-power widely tunable all-fiber thulium-assisted optical parametric oscillator at SWIR band, Optics Letters, Volume 41 (2016) no. 22, p. 5258 | DOI:10.1364/ol.41.005258
- , Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, Volume 10031 (2016), p. 1003109 | DOI:10.1117/12.2248898
- Amplified and directional spontaneous emission from arbitrary composite bodies: A self-consistent treatment of Purcell effect below threshold, Physical Review B, Volume 93 (2016) no. 12 | DOI:10.1103/physrevb.93.125415
- Acousto-optic Q-switched Tm:Ho:YbAG laser pumped at 1678 nm, Physics of Wave Phenomena, Volume 24 (2016) no. 4, p. 255 | DOI:10.3103/s1541308x16040014
- Role of Yb3+ ions on enhanced 2.9 μm emission from Ho3+ ions in low phonon oxide glass system, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep29203
- Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep29871
- A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction, Sensors and Actuators B: Chemical, Volume 231 (2016), p. 529 | DOI:10.1016/j.snb.2016.03.040
- All-fiber tunable ring laser source near 2 μm designed for CO2 sensing, Sensors and Actuators B: Chemical, Volume 235 (2016), p. 547 | DOI:10.1016/j.snb.2016.05.128
- , AOPC 2015: Advances in Laser Technology and Applications, Volume 9671 (2015), p. 96711Z | DOI:10.1117/12.2202956
- , Advanced Solid State Lasers (2015), p. AM2A.4 | DOI:10.1364/assl.2015.am2a.4
- , CLEO: 2015 (2015), p. SW1L.2 | DOI:10.1364/cleo_si.2015.sw1l.2
- Synthesis and characterization of a new mid-infrared transparent compound: acentric Ba5In4Te4S7, Dalton Transactions, Volume 44 (2015) no. 16, p. 7673 | DOI:10.1039/c5dt00228a
- Fabrication, optical properties and LD-pumped 2.7μm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics, Journal of Alloys and Compounds, Volume 640 (2015), p. 51 | DOI:10.1016/j.jallcom.2015.03.190
- Silicon Waveguides at the Mid-Infrared, Journal of Lightwave Technology, Volume 33 (2015) no. 15, p. 3207 | DOI:10.1109/jlt.2015.2410493
- Influence of the ytterbium doping technique on the luminescent properties of ZnSe single crystals, Journal of Luminescence, Volume 158 (2015), p. 236 | DOI:10.1016/j.jlumin.2014.10.002
- Spectroscopy and diode pumped laser emission in (LuxGd(1–x))3Ga5O12:Tm3+single crystal, Journal of Physics D: Applied Physics, Volume 48 (2015) no. 38, p. 385302 | DOI:10.1088/0022-3727/48/38/385302
- The effects of Ho3+ and Pr3+ ions on the spectroscopic properties of Er3+ doped SrGdGa3O7 crystals used in mid-infrared lasers, Journal of Physics D: Applied Physics, Volume 48 (2015) no. 43, p. 435106 | DOI:10.1088/0022-3727/48/43/435106
- High pulse energy passive Q-switching of a diode-pumped Tm:YLF laser by Cr:ZnSe, Laser Physics Letters, Volume 12 (2015) no. 4, p. 045804 | DOI:10.1088/1612-2011/12/4/045804
- Single-layer graphene saturable absorber for diode-pumped passively Q-switched Tm:KLu(WO4)2laser at 2μm, Laser Physics Letters, Volume 12 (2015) no. 9, p. 095802 | DOI:10.1088/1612-2011/12/9/095802
- Isolator-free unidirectional thulium-doped fiber laser, Light: Science Applications, Volume 4 (2015) no. 10, p. e340 | DOI:10.1038/lsa.2015.113
- Increased radiative lifetime of Tm3+:3F4→3H6 transition in oxyfluoride tellurite glasses, Materials Research Bulletin, Volume 64 (2015), p. 262 | DOI:10.1016/j.materresbull.2014.12.066
- Effect of Sm3+on the structural, optical, magnetic and electrical properties of electrochemical deposition of ZnSe thin films, Materials Research Express, Volume 2 (2015) no. 9, p. 096102 | DOI:10.1088/2053-1591/2/9/096102
- , Nonlinear Optics (2015), p. NW4A.2 | DOI:10.1364/nlo.2015.nw4a.2
- , Optical Fibers and Their Applications 2015, Volume 9816 (2015), p. 981605 | DOI:10.1117/12.2218240
- Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical properties, and laser performance, Optical Materials, Volume 50 (2015), p. 47 | DOI:10.1016/j.optmat.2015.03.036
- Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics, Optical Materials Express, Volume 5 (2015) no. 1, p. 142 | DOI:10.1364/ome.5.000142
- Highly efficient mid-infrared 2 μm emission in Ho^3+/Yb^3+-codoped germanate glass, Optical Materials Express, Volume 5 (2015) no. 6, p. 1431 | DOI:10.1364/ome.5.001431
- High performance 2150 nm-emitting InAs/InGaAs/InP quantum well lasers grown by metalorganic vapor phase epitaxy, Optics Express, Volume 23 (2015) no. 7, p. 8383 | DOI:10.1364/oe.23.008383
- Tunable type II intracavity difference frequency generation at 54 μm in a two chip vertical external cavity surface emitting laser, Optics Letters, Volume 40 (2015) no. 17, p. 4174 | DOI:10.1364/ol.40.004174
- Diode end-pumped passively Q-switched Tm:YAP laser with 185-mJ pulse energy, Optics Letters, Volume 40 (2015) no. 7, p. 1250 | DOI:10.1364/ol.40.001250
- , Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2015, Volume 9662 (2015), p. 96620N | DOI:10.1117/12.2205515
- Observation of core-excited configuration in four-time ionized neodymium Nd4+(Nd V), Physica Scripta, Volume 90 (2015) no. 9, p. 095402 | DOI:10.1088/0031-8949/90/9/095402
- , Physics and Simulation of Optoelectronic Devices XXIII, Volume 9357 (2015), p. 93571G | DOI:10.1117/12.2078331
- Spectral and lasing characteristics of 1 | DOI:10.1070/qe2015v045n01abeh015599
- Re3+: YAG laser ceramics: synthesis, optical properties and laser characteristics, Quantum Electronics, Volume 45 (2015) no. 5, p. 492 | DOI:10.1070/qe2015v045n05abeh015769
- Evaluation of spectroscopic properties of Er3+/Yb3+/Pr3+: SrGdGa3O7 crystal for use in mid-infrared lasers, Scientific Reports, Volume 5 (2015) no. 1 | DOI:10.1038/srep13988
- R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 μm laser materials, Scientific Reports, Volume 5 (2015) no. 1 | DOI:10.1038/srep13056
- 1 kW peak power, 110 ns single-frequency thulium doped fiber amplifier at 2050 nm, Applied Optics, Volume 53 (2014) no. 20, p. 4413 | DOI:10.1364/ao.53.004413
- High repetition rate, Q-switched Ho:YAG laser resonantly pumped by a 20 W linearly polarized Tm: fiber laser, Applied Physics B, Volume 114 (2014) no. 3, p. 395 | DOI:10.1007/s00340-013-5532-0
- Mid-infrared light emission from a Fe2+:ZnSe polycrystal using quantum cascade laser pumping, Applied Physics Letters, Volume 105 (2014) no. 14 | DOI:10.1063/1.4897546
- Quantum Cascade Laser Based Chemical Sensing Using Optically Resonant Cavities, Cavity-Enhanced Spectroscopy and Sensing, Volume 179 (2014), p. 93 | DOI:10.1007/978-3-642-40003-2_3
- Control of Melt Decomposition for the Growth of High Quality AgGaGeS4 Single Crystals for Mid-IR Laser Applications, Crystal Growth Design, Volume 14 (2014) no. 11, p. 5554 | DOI:10.1021/cg500813q
- , International Symposium on Optoelectronic Technology and Application 2014: Development and Application of High Power Lasers, Volume 9294 (2014), p. 92940K | DOI:10.1117/12.2070660
- Investigation of laser-diode end-pumped Er:YSGG/YSGG composite crystal lasers at 2.79 μm, Laser Physics Letters, Volume 11 (2014) no. 1, p. 015002 | DOI:10.1088/1612-2011/11/1/015002
- Low-phonon PbF2:Tm3+-doped crystal for 1.9µm lasing, Laser Physics Letters, Volume 11 (2014) no. 11, p. 115802 | DOI:10.1088/1612-2011/11/11/115802
- Highly efficient resonantly pumped 2000 nm Tm:YAG ceramic laser, Optical Engineering, Volume 53 (2014) no. 4, p. 040501 | DOI:10.1117/1.oe.53.4.040501
- Broadband near infrared emission in antimony-germanate glass co-doped with erbium and thulium ions, Optical Engineering, Volume 53 (2014) no. 7, p. 071807 | DOI:10.1117/1.oe.53.7.071807
- Host and growth technique to develop laser materials in the 2-μm spectral region, Optical Engineering, Volume 53 (2014) no. 7, p. 071820 | DOI:10.1117/1.oe.53.7.071820
- Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity, Optical Fiber Technology, Volume 20 (2014) no. 6, p. 678 | DOI:10.1016/j.yofte.2014.06.010
- , Optical Fibers and Their Applications 2014, Volume 9228 (2014), p. 922806 | DOI:10.1117/12.2065541
- , Optical Fibers and Their Applications 2014, Volume 9228 (2014), p. 92280C | DOI:10.1117/12.2067063
- Mid-infrared fluorescence of Y2O3 and Nb2O5 modified germanate glasses doped with Er3+ pumped by 808nm LD, Optical Materials, Volume 36 (2014) no. 8, p. 1350 | DOI:10.1016/j.optmat.2014.03.026
- Compact passively Q-switched Tm:YLF laser with a polycrystalline Cr:ZnS saturable absorber, Optics Laser Technology, Volume 57 (2014), p. 202 | DOI:10.1016/j.optlastec.2013.10.021
- Comparative investigation of diode-wing-pumped Tm:Y3Al5O12 laser between composite and non-composite crystal, Optics Laser Technology, Volume 63 (2014), p. 132 | DOI:10.1016/j.optlastec.2014.04.008
- Phase-matching directions, refined Sellmeier equations, and second-order nonlinear coefficient of the infrared Langatate crystal La_3Ga_55Ta_05O_14, Optics Letters, Volume 39 (2014) no. 13, p. 4033 | DOI:10.1364/ol.39.004033
- Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser, Optics Letters, Volume 39 (2014) no. 6, p. 1341 | DOI:10.1364/ol.39.001341
- , Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2014, Volume 9290 (2014), p. 92900Q | DOI:10.1117/12.2075861
- , Advanced Solid-State Lasers Congress (2013), p. AM3A.6 | DOI:10.1364/assl.2013.am3a.6
- , Advanced Solid-State Lasers Congress (2013), p. JTh2A.49 | DOI:10.1364/assl.2013.jth2a.49
- Free-running and Q-switched operation of a diode pumped Er:YSGG laser at the 3 μm transition, Applied Physics B, Volume 111 (2013) no. 2, p. 333 | DOI:10.1007/s00340-013-5337-1
- On the Exploitation of Mid-infrared Iridescence of Plumage for Remote Classification of Nocturnal Migrating Birds, Applied Spectroscopy, Volume 67 (2013) no. 5, p. 477 | DOI:10.1366/12-06860
- A promising nonlinear optical material in the Mid-IR region: new results on synthesis, crystal structure and properties of noncentrosymmetric β-HgBrCl, Dalton Transactions, Volume 42 (2013) no. 27, p. 9893 | DOI:10.1039/c3dt50291k
- Mid-infrared optical parametric oscillators, Handbook of Solid-State Lasers (2013), p. 463 | DOI:10.1533/9780857097507.2.463
- Spectroscopic properties and laser performance of Tm:YAG ceramics, Journal of Luminescence, Volume 142 (2013), p. 189 | DOI:10.1016/j.jlumin.2013.02.015
- The enhanced two micron emission in thulium doped tellurite glasses, Optical Materials, Volume 35 (2013) no. 10, p. 1792 | DOI:10.1016/j.optmat.2013.03.025
- Investigation on broadband near-infrared emission in Yb3+/Ho3+ co-doped antimony–silicate glass and optical fiber, Optical Materials, Volume 35 (2013) no. 12, p. 2577 | DOI:10.1016/j.optmat.2013.07.022
- Densification and optical properties of transparent Ho:YAG ceramics, Optical Materials, Volume 35 (2013) no. 4, p. 748 | DOI:10.1016/j.optmat.2012.08.005
- Spectral and lasing investigations of Yb:YSGG crystal, Optics Express, Volume 21 (2013) no. 14, p. 16305 | DOI:10.1364/oe.21.016305
- Widely tunable difference frequency generation source for high-precision mid-infrared spectroscopy, Optics Express, Volume 21 (2013) no. 8, p. 9238 | DOI:10.1364/oe.21.009238
- Microsecond fiber laser pumped, single-frequency optical parametric oscillator for trace gas detection, Optics Letters, Volume 38 (2013) no. 13, p. 2165 | DOI:10.1364/ol.38.002165
- 48 μm difference-frequency generation using a waveguide-PPLN crystal and its application to mid-infrared Lamb-dip spectroscopy, Optics Letters, Volume 38 (2013) no. 15, p. 2825 | DOI:10.1364/ol.38.002825
- All-fiber, ultra-wideband tunable laser at 2 μm, Optics Letters, Volume 38 (2013) no. 22, p. 4739 | DOI:10.1364/ol.38.004739
- In-band pumped Ho^3+:KY_3F_10 2 μm laser, Optics Letters, Volume 38 (2013) no. 4, p. 504 | DOI:10.1364/ol.38.000504
- Time-domain ABCD matrix analysis of passively mode-locked Tm-doped fiber laser, Optik, Volume 124 (2013) no. 13, p. 1490 | DOI:10.1016/j.ijleo.2012.04.014
- Tm3+/Ho3+-Doped ASE Fibre Source for Mid-Infrared Sensor Applications, Acta Physica Polonica A, Volume 122 (2012) no. 5, p. 927 | DOI:10.12693/aphyspola.122.927
- Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser, Applied Optics, Volume 51 (2012) no. 14, p. 2701 | DOI:10.1364/ao.51.002701
- A DFG-based cavity ring-down spectrometer for trace gas sensing in the mid-infrared, Applied Physics B, Volume 109 (2012) no. 2, p. 333 | DOI:10.1007/s00340-012-5150-2
- Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal, Applied Physics B, Volume 109 (2012) no. 4, p. 567 | DOI:10.1007/s00340-012-5153-z
- Growth, structure and spectral properties of a novel crystal CaErAlO4 for 2.7 μm lasers, CrystEngComm, Volume 14 (2012) no. 21, p. 7423 | DOI:10.1039/c2ce26013a
- Synthesis and Structure Resolution of RbLaF4, Inorganic Chemistry, Volume 51 (2012) no. 4, p. 2272 | DOI:10.1021/ic202301e
- Epitaxial growth of quasi-phase matched GaP for nonlinear applications: Systematic process improvements, Journal of Crystal Growth, Volume 352 (2012) no. 1, p. 72 | DOI:10.1016/j.jcrysgro.2011.12.077
- First-principles studies on linear and nonlinear optical effects in Ln4GaSbS9 (Ln=Ce–Nd, Sm, Gd–Tm, Lu), Journal of Solid State Chemistry, Volume 195 (2012), p. 166 | DOI:10.1016/j.jssc.2012.02.052
- Polycrystalline Ho:YAG Transparent Ceramics for Eye‐Safe Solid State Laser Applications, Journal of the American Ceramic Society, Volume 95 (2012) no. 1, p. 52 | DOI:10.1111/j.1551-2916.2011.04953.x
- Passive Q-switching of the diode pumped Tm^3+:KLu(WO_4)_2 laser near 2-µm with Cr^2+:ZnS saturable absorbers, Optics Express, Volume 20 (2012) no. 4, p. 3394 | DOI:10.1364/oe.20.003394
- 175 fs Tm:Lu_2O_3 laser at 207 µm mode-locked using single-walled carbon nanotubes, Optics Express, Volume 20 (2012) no. 5, p. 5313 | DOI:10.1364/oe.20.005313
- Compact passively Q-switched diode-pumped Tm:LiLuF_4 laser with 126 mJ output energy, Optics Letters, Volume 37 (2012) no. 13, p. 2544 | DOI:10.1364/ol.37.002544
- Benefit of Pr^3+ ions to the spectral properties of Pr^3+/Er^3+:CaGdAlO_4crystal for a 27 μm laser, Optics Letters, Volume 37 (2012) no. 23, p. 4838 | DOI:10.1364/ol.37.004838
- 26 nJ picosecond solitons from thulium-doped single-mode master oscillator power fiber amplifier, Optics Letters, Volume 37 (2012) no. 3, p. 377 | DOI:10.1364/ol.37.000377
- Tunable repetitively pulsed Cr2+: ZnSe laser, Quantum Electronics, Volume 42 (2012) no. 12, p. 1106 | DOI:10.1070/qe2012v042n12abeh014972
- Fabrication and Properties of High Quality Transparent Ho:YAG Ceramics, Solid State Phenomena, Volume 185 (2012), p. 51 | DOI:10.4028/www.scientific.net/ssp.185.51
- , 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC) (2011), p. 1 | DOI:10.1109/cleoe.2011.5942833
- , 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology (2011), p. 1553 | DOI:10.1109/iqec-cleo.2011.6193834
- , 2011 Symposium on Photonics and Optoelectronics (SOPO) (2011), p. 1 | DOI:10.1109/sopo.2011.5780675
- , Advances in Optical Materials (2011), p. AIThB18 | DOI:10.1364/aiom.2011.aithb18
- The ways to the trace level analysis in infrared spectroscopy, Anal. Methods, Volume 3 (2011) no. 1, p. 43 | DOI:10.1039/c0ay00437e
- 2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre, Bulletin of the Polish Academy of Sciences: Technical Sciences, Volume 59 (2011) no. 4, p. 381 | DOI:10.2478/v10175-011-0045-7
- Syntheses and Characterization of New Mid-Infrared Transparency Compounds: Centric Ba2BiGaS5 and Acentric Ba2BiInS5, Inorganic Chemistry, Volume 50 (2011) no. 12, p. 5679 | DOI:10.1021/ic2004358
- Enhanced mid-IR emission in Yb3+–Tm3+ co-doped oxyfluoride glass ceramics, Journal of Alloys and Compounds, Volume 509 (2011) no. 6, p. 3032 | DOI:10.1016/j.jallcom.2010.11.192
- HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices, Journal of the European Optical Society-Rapid Publications, Volume 6 (2011), p. 11017 | DOI:10.2971/jeos.2011.11017
- Resonantly pumped acousto-optically Q-switched hybrid Ho:YAG laser, Laser Physics Letters, Volume 8 (2011) no. 4, p. 281 | DOI:10.1002/lapl.201010132
- Novel Tm3+-doped fluorotellurite glasses with enhanced quantum efficiency, Optical Materials, Volume 33 (2011) no. 3, p. 428 | DOI:10.1016/j.optmat.2010.10.013
- Polarized spectral properties of Tm3+:K5Bi(MoO4)4 crystal, Optical Materials, Volume 34 (2011) no. 1, p. 287 | DOI:10.1016/j.optmat.2011.08.032
- Light scattering and 2-μm laser performance of Tm:YAG ceramic, Optics Communications, Volume 284 (2011) no. 6, p. 1645 | DOI:10.1016/j.optcom.2010.11.051
- Continuous-wave and Q-switched Tm-doped KY(WO_4)_2 planar waveguide laser at 184 µm, Optics Express, Volume 19 (2011) no. 2, p. 1449 | DOI:10.1364/oe.19.001449
- Picosecond tunable mode locking of a Cr^2+:ZnSe laser with a nonlinear mirror, Optics Letters, Volume 36 (2011) no. 5, p. 751 | DOI:10.1364/ol.36.000751
- High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO, Applied Physics B, Volume 98 (2010) no. 1, p. 217 | DOI:10.1007/s00340-009-3710-x
- 2 – 3 μ m mid infrared light sources using InGaAs/GaAsSb “W” type quantum wells on InP substrates, Journal of Applied Physics, Volume 108 (2010) no. 10 | DOI:10.1063/1.3506427
- Luminescence properties of Cr2+:ZnSe: Comparison between a single crystal and a film deposited by RF magnetron co-sputtering, Journal of Luminescence, Volume 130 (2010) no. 8, p. 1449 | DOI:10.1016/j.jlumin.2010.03.010
- Tm3+ and Yb3+ co-doped tellurite glasses for short cavity optical fiber lasers: Fabrication and optical characterization, Journal of Non-Crystalline Solids, Volume 356 (2010) no. 44-49, p. 2378 | DOI:10.1016/j.jnoncrysol.2010.03.029
- Spectroscopy and optical characterization of thulium doped TZN glasses, Journal of Physics D: Applied Physics, Volume 43 (2010) no. 13, p. 135104 | DOI:10.1088/0022-3727/43/13/135104
- Spectroscopic properties of Ho3+ single-doped and Tm3+/Ho3+ co-doped LiLa(MoO4)2 crystals, Journal of Physics D: Applied Physics, Volume 43 (2010) no. 49, p. 495401 | DOI:10.1088/0022-3727/43/49/495401
- Polarized spectral properties and laser demonstration of Tm^3+-doped LiGd(MoO_4)_2 crystal, Journal of the Optical Society of America B, Volume 27 (2010) no. 9, p. 1769 | DOI:10.1364/josab.27.001769
- Optical second harmonic generation in the centrosymmetric magnetic semiconductors EuTe and EuSe, Physical Review B, Volume 81 (2010) no. 15 | DOI:10.1103/physrevb.81.155201
- CW laser operation around 2- μm in (Tm,Y b):KLu(WO4)2, Physics Procedia, Volume 8 (2010), p. 157 | DOI:10.1016/j.phpro.2010.10.027
- A quantum cascade laser cw cavity ringdown spectrometer coupled to a supersonic expansion source, Review of Scientific Instruments, Volume 81 (2010) no. 6 | DOI:10.1063/1.3427357
- Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview, Sensors, Volume 10 (2010) no. 7, p. 6861 | DOI:10.3390/s100706861
- Novel mechanisms of optical harmonics generation in semiconductors, physica status solidi (b), Volume 247 (2010) no. 6, p. 1498 | DOI:10.1002/pssb.200983269
- , 2009 11th International Conference on Transparent Optical Networks (2009), p. 1 | DOI:10.1109/icton.2009.5185230
- Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm, Applied Physics B, Volume 97 (2009) no. 4, p. 919 | DOI:10.1007/s00340-009-3669-7
- Q-Switched Tm:YAG Laser Intracavity-Pumped by a 1064 nm Laser, Chinese Physics Letters, Volume 26 (2009) no. 12, p. 124211 | DOI:10.1088/0256-307x/26/12/124211
- The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared, Laser Photonics Reviews, Volume 3 (2009) no. 5, p. 466 | DOI:10.1002/lpor.200810058
- Design and Fabrication of Rare‐Earth‐Doped Laser Cooling Materials, Optical Refrigeration (2009), p. 33 | DOI:10.1002/9783527628049.ch2
- High-pulse-energy mid-infrared laser source based on optical parametric amplification in ZnGeP_2, Optics Express, Volume 16 (2008) no. 18, p. 14263 | DOI:10.1364/oe.16.014263
- Spectroscopic and lasing performance of Tm^3+-doped bulk TZN and TZNG tellurite glasses operating around 19 μm, Optics Express, Volume 16 (2008) no. 23, p. 19146 | DOI:10.1364/oe.16.019146
Cité par 383 documents. Sources : Crossref
Commentaires - Politique