[Sources laser solide infrarouge (2–12 μm) : une revue]
Le domaine infrarouge est très intéressant pour de nombreuses applications grâce à deux caractéristiques particulières : (i) il contient plusieurs fenêtres de transmission de l'atmosphère, (ii) il correspond à la région ‘d'empreintes digitales’ du spectre électromagnétique où de nombreuses molécules présentent de fortes raies rovibrationnelles d'absorption. Dans de nombreux cas, ces applications (telles que la chirurgie laser, l'analyse de gaz, la détection à distance, la spectrocopie non linéaire, les contre-mesures) nécessitent de disposer de rayonnement cohérent tel que celui émis par une source laser. Dans ce contexte, le choix de la bonne filière est un paramètre clef. En fonction de l'application sélectionnée, il peut être requis que la source délivre un rayonnement accordable, une faible largeur de raie, un faisceau proche de la limite de diffraction, une émission continue ou impulsionnelle, etc. Cet article passe brièvement en revue les principales technologies, restreintes aux sources continues ou impulsionnelles nanoseconde émettant dans l'intervalle 2–12 μm. Les filières technologiques considérées incluent les lasers solide et fibre dopés aux ions terre-rare ou métal de transition, les lasers semi-conducteurs et les sources paramétriques optiques. Les avantages et les inconvénients de ces technologies sont ensuite discutés rapidement dans le contexte de quelques applications sélectionnées.
The infrared domain is very attractive for many applications owing to two unique features: (i) it contains several atmospheric transparency windows, (ii) it corresponds to the ‘molecular fingerprint’ region of the electromagnetic spectrum where various molecules have strong rovibrational absorption lines. In many cases, these applications (e.g. laser surgery, trace gas monitoring, remote sensing, nonlinear spectroscopy, countermeasures, …) require coherent light radiation as the one emitted by a laser source. In this context, the choice of the proper technology is a key issue. Depending on the selected application, it could be required the source to deliver tunable emission, narrow linewidth, nearly diffraction limited beam, pulsed or continuous-wave (CW) radiation, etc. This article briefly reviews the main technologies, restricted to CW and nanosecond pulsed sources emitting in the 2–12 μm range. The technologies considered include rare-earth and transition-metal doped bulk and fiber lasers, semiconductor lasers, and optical parametric sources. Pros and cons of these technologies are then briefly discussed in the context of several selected applications.
Mot clés : Infrarouge, Laser, Terre-rare, Métal de transition, Laser à semi-conducteur, Laser à cascade quantique, Source paramétrique
Antoine Godard 1
@article{CRPHYS_2007__8_10_1100_0, author = {Antoine Godard}, title = {Infrared (2{\textendash}12 \ensuremath{\mu}m) solid-state laser sources: a review}, journal = {Comptes Rendus. Physique}, pages = {1100--1128}, publisher = {Elsevier}, volume = {8}, number = {10}, year = {2007}, doi = {10.1016/j.crhy.2007.09.010}, language = {en}, }
Antoine Godard. Infrared (2–12 μm) solid-state laser sources: a review. Comptes Rendus. Physique, Volume 8 (2007) no. 10, pp. 1100-1128. doi : 10.1016/j.crhy.2007.09.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.010/
[1] Solid-State Mid-Infrared Sources (I.T. Sorokina; K.L. Vodopyanov, eds.), Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003
[2] Highly efficient high-power thulium-doped germanate glass fiber laser, Opt. Lett., Volume 32 (2007), pp. 638-640
[3] Power-scalable thulium and holmium fibre lasers pumped by 793 nm diode lasers, Advanced Solid-State Photonics 2007, The Optical Society of America, Washington, 2007 (Technical Digest, WE5)
[4] http://www.ipgphotonics.com/
[5] 120-W continuous-wave diode-pumped Tm:YAG laser, Opt. Lett., Volume 25 (2000), pp. 1591-1593
[6] A CW side-pumped Tm:YLF laser (M. Ferman; L. Marshall, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 68, Optical Society of America, 2002, pp. 343-346
[7] High power Q-switched Tm:YALO lasers (G.J. Quarles, ed.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 94, Optical Society of America, 2004, pp. 329-332
[8] Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers, Opt. Lett., Volume 32 (2007), pp. 1056-1058
[9] Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation, Appl. Phys. B, Volume 85 (2006), pp. 553-555
[10] Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm, Opt. Lett., Volume 19 (1994), pp. 883-885
[11] Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett., Volume 15 (1990), pp. 486-488
[12] Efficient 1.94 μm Tm:YALO laser, IEEE J. Sel. Topics Quantum Electron., Volume 1 (1995), pp. 78-80
[13] Broadly tunable laser emission from Tm:Y2O3 and Tm:Sc2O3 at 2 μm (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 450-453
[14] High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm, Opt. Lett., Volume 27 (2002), pp. 1989-1991
[15] Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser (M. Ferman; L. Marshall, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 68, Optical Society of America, 2002, pp. 347-350
[16] High-power widely tunable Tm:fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm, Opt. Express, Volume 14 (2006), pp. 6084-6090
[17] Mid-IR laser application in medicine (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin Heidelberg, 2003, pp. 511-544
[18] 1 J/pulse Q-switched 2 μm solid-state laser, Opt. Lett., Volume 31 (2006), pp. 462-464
[19] Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG, IEEE J. Quantum Electron., Volume 24 (1988), pp. 924-933
[20] Efficient mid-infrared laser using 1.9 μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 723-728
[21] Midinfrared laser source with high power and beam quality, Appl. Opt., Volume 45 (2006), pp. 3839-3845
[22] Ho:YAG laser pumped by 1.9 μm diode lasers, IEEE J. Quantum Electron., Volume 31 (1995), pp. 1603-1605
[23] High power, high energy Ho:YLF laser pumped with Tm:fiber laser (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 608-612
[24] Cascade laser oscillation due to Ho3+ ions in a (Cr,Yb,Ho):YSGG yttrium–scandium–gallium garnet crystal, Sov. J. Quantum Electron., Volume 23 (1993), pp. 312-316 (transl. from: Kvan. Elektron., 20, 1993, pp. 366-370)
[25] Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm, Opt. Lett., Volume 29 (2004), pp. 334-336
[26] Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet, J. Appl. Phys., Volume 87 (2000), pp. 4063-4068
[27] 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser, Opt. Lett., Volume 32 (2007), pp. 26-28
[28] Tunable CW Er:YLF diode-pumped laser, Advanced Solid-State Photonics, Optical Society of America, 2003, pp. 5-7 (Technical Digest)
[29] Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications, Opt. Express, Volume 12 (2004), pp. 5125-5130
[30] Diode-pumped Q-switched erbium lasers with short pulse duration (R.C. Pollock; W.R. Bosenberg, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 10, Optical Society of America, 1997, pp. 217-221
[31] Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quantum Electron., Volume 32 (1996), pp. 885-895
[32] Cr2+-doped II–VI materials for lasers and nonlinear optics, Opt. Mat., Volume 26 (2004), pp. 395-412
[33] Ultrabroadband infrared solide-state lasers, IEEE J. Sel. Topics Quantum Electron., Volume 11 (2005), pp. 690-712
[34] Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals, Appl. Phys. B, Volume 72 (2001), pp. 253-255
[35] Erbium fiber laser-pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers, Opt. Let., Volume 27 (2002), pp. 909-911
[36] 1.9 μm and 2.0 μm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe, Opt. Let., Volume 27 (2002), pp. 1034-1036
[37] Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm, Opt. Lett., Volume 31 (2006), pp. 2293-2295
[38] Chirped-mirror dispersion controlled femtosecond Cr:ZnSe laser, Advanced Solid-State Photonics, Optical Society of America, 2007 OSA Technical Digest Series (CD), paper WA7
[39] Power scaling of Cr2+:ZnSe lasers (C. Marshall, ed.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 50, Optical Society of America, 2001, pp. 506-510
[40] High-brightness, rapidly-tunable Cr:ZnSe lasers (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 723-727
[41] Tunable infrared laser sources for DIAL (G.W. Kamerman, ed.), Laser Radar Technology and Applications VII, Proc. SPIE, vol. 4723, 2002, pp. 147-155
[42] Widely tunable Cr2+:ZnSe laser source for trace-gas sensing (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 826-830
[43] High-power, rapidly-tunable ZnGeP2 intracavity optical parametric oscillator, Conference on Lasers and Electro-Optics, Optical Society of America, 2005 (Technical Digest, paper CThY5)
[44] High-power, rapidly tunable dual band CdSe optical parametric oscillator (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 433-437
[45] Mid-infrared electroluminescence of Cr2+ ions in ZnSe crystals, Advanced Solid-State Photonics, Optical Society of America, 2006 (Technical Digest, WB21)
[46] Room-temperature electroluminescence in the mid-infrared (2–3 μm) from bulk chromium-doped ZnSe, Opt. Lett., Volume 31 (2006), pp. 3051-3053
[47] 3.77–5.05 μm tunable solid-state lasers on Fe2+-doped ZnSe crystals operating low and room temperatures, IEEE J. Quantum Electron., Volume 42 (2006), pp. 907-917
[48] Mid-infrared 2–5 μm heterojunction laser diodes (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003, pp. 1-59
[49] 2.3–2.7 μm room temperature CW operation of InGaAsSb–AlGaAsSb broad waveguide SCH-QW diode lasers, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 794-796
[50] High-power GaInAsSb–AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 μm, IEEE Photon. Technol. Lett., Volume 6 (1994), pp. 7-9
[51] 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes, Appl. Phys. Lett., Volume 70 (1997), pp. 2931-2933
[52] Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves, Appl. Phys. Lett., Volume 81 (2002), pp. 3146-3148
[53] Low threshold high-power room-temperature continuous-wave operation diode laser emitting at 2.26 μm, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 1253-1255
[54] High-power 2.3 μm laser arrays emitting 10 W CW at room temperature, Electron. Lett., Volume 40 (2004), pp. 737-738
[55] High-power 1.9 μm diode laser arrays with reduced far-field angle, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 628-630
[56] GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6-W diffraction-limited power, IEEE Photon. Technol. Lett., Volume 10 (1998), pp. 938-940
[57] GaSb-based tapered diode lasers at 1.93 μm with 1.5-W nearly diffraction-limited power, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 758-760
[58] High-power high-brightness GaInAsSb–AlGaAsSb tapered laser arrays with anamorphic collimating lenses emitting at 2.05 μm, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 1223-1225
[59] Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm, IEEE Photon. Technol. Lett., Volume 18 (2006), pp. 1913-1915
[60] GaInAsSb–AlGaAsSb distributed feedback lasers emitting near 2.4 μm, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 380-382
[61] Quantum cascade lasers: the quantum technology for semiconductor lasers in the mid-far-infrared, C. R. Physique, Volume 4 (2003), pp. 639-648
[62] High performances quantum cascade lasers and their applications (I.T. Sorokina; K.L. Vodopyanov, eds.), Solid-State Mid-Infrared Sources, Topics in Applied Physics, vol. 89, Springer, Berlin, Heidelberg, 2003, pp. 61-96
[63] New frontiers in quantum cascade lasers and applications, IEEE J. Sel. Topics Quantum Electron., Volume 6 (2000), pp. 931-947
[64] Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers, J. Appl. Phys., Volume 99 (2006), p. 123108
[65] High-power () quantum cascade lasers, Appl. Phys. Lett., Volume 80 (2002), pp. 4091-4093
[66] High-power spatial singlemode quantum cascade lasers at 8.9 μm, Electron. Lett., Volume 41 (2005), pp. 418-419
[67] Continuous wave operation of a 9.3 μm quantum cascade laser on Peltier cooler, Appl. Phys. Lett., Volume 78 (2001), pp. 1964-1966
[68] High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature, Appl. Phys. Lett., Volume 83 (2003), pp. 2503-2505
[69] Cavity-length effects of high-temperature high-power continuous-wave characteristics in quantum-cascade lasers, Appl. Phys. Lett., Volume 83 (2003), pp. 5136-5138
[70] S. Blaser, High power and single frequency quantum cascade lasers for chemical sensing, in: 4th Workshop on Quantum Cascade Lasers, Technology and Applications, Freiburg, Germany, 2005
[71] Continuous-wave operation of quantum cascade lasers, Appl. Phys. Lett., Volume 85 (2004), pp. 2166-2168
[72] High-power continuous-wave operation of quantum-cascade lasers up to 60 °C, IEEE Photon. Technol. Lett., Volume 16 (2004), pp. 747-749
[73] High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers, Appl. Phys. Lett., Volume 84 (2004), pp. 314-316
[74] Short wavelength () high-performance continuous-wave quantum-cascade lasers, IEEE Photon. Technol. Lett., Volume 17 (2005), pp. 1154-1156
[75] Beam steering in high-power CW quantum-cascade lasers, IEEE J. Quantum Electron., Volume 41 (2005), pp. 833-841
[76] High-power room temperature emission quantum cascade lasers at , IEEE J. Quantum Electron., Volume 41 (2005), pp. 1430-1438
[77] Quantum-cascade lasers operating in continuous-wave mode above 90 °C at , Appl. Phys. Lett., Volume 88 (2006), p. 051105
[78] High-power quantum-cascade lasers operating above room temperature in continuous-wave mode, Appl. Phys. Lett., Volume 88 (2006), p. 091113
[79] High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K, Appl. Phys. Lett., Volume 88 (2006), p. 201115
[80] Temperature dependent characteristics of room-temperature continuous-wave quantum-cascade lasers, Appl. Phys. Lett., Volume 88 (2006), p. 251118
[81] Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies, Appl. Phys. Lett., Volume 89 (2006), p. 141116
[82] High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm, Appl. Phys. Lett., Volume 90 (2007), p. 151115
[83] Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser, Opt. Lett., Volume 30 (2006), pp. 2584-2587
[84] High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings, Appl. Phys. Lett., Volume 89 (2006), p. 201117
[85] Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives, Appl. Phys. B, Volume 85 (2006), pp. 251-256
[86] Mid-infrared optical parametric generator with extra-wide (3–19 μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells, J. Opt. Soc. Am. B, Volume 16 (1999), pp. 1579-1586
[87] Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2102-2116
[88] Optical parametric oscillation with intracavity difference-frequency mixing, J. Opt. Soc. Am. B, Volume 12 (1995), pp. 2268-2273
[89] Pulsed optical parametric oscillators with intracavity optical parametric amplification: a critical study, Appl. Phys. B, Volume 86 (2007), pp. 633-642
[90] Periodically poled LiNbO3 optical parametric oscillator with intracavity difference frequency mixing (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 245-248
[91] Dual-cavity doubly resonant optical parametric oscillators: demonstration of pulsed single-mode operation, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 1716-1729
[92] Mid-infrared high-resolution absorption spectroscopy by use of a semimonolithic entangled-cavity optical parametric oscillator, Opt. Lett., Volume 29 (2004), pp. 2887-2889
[93] Mid-IR entangled-cavity doubly resonant OPO pumped by a micro-laser, Conference on Lasers and Electro-Optics, Optical Society of America, 2007 (Technical Digest, paper CThL6)
[94] Mid-IR entangled-cavity doubly resonant OPO pumped by a micro-laser, Conference on Lasers and Electro-Optics, Optical Society of America, 2007 (Technical Digest, paper CThL6)
[95] High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a aperture, Opt. Lett., Volume 30 (2005), pp. 2918-2920
[96] High-energy narrow-linewidth tunable source in the mid infrared (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 269-272
[97] 52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device, Opt. Lett., Volume 31 (2006), pp. 3149-3151
[98] Difference frequency generation in a ZnGeP2 crystal pumped by a large aperture periodically poled MgO:LiNbO3 optical parametric system, Advanced Solid-State Photonics 2007, The Optical Society of America, Washington, 2007 (Technical Digest, MB8)
[99] ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 μm source, Opt. Lett., Volume 31 (2006), pp. 1878-1880
[100] High-energy mid-IR source based on two-stage conversion from 1.06 μm (C. Denman; I.T. Sorokina, eds.), Trends in Optics and Photonics, Advanced Solid-State Photonics, vol. 98, Optical Society of America, 2005, pp. 417-422
[101] Recent developments in scaling output energy from erbium-based lasers and their uses as pump sources for MWIR & LWIR OPOs, Laser and Electro-Optics Society Annual Meeting 2004 Conference Proceedings, vol. 2, IEEE, 2004, pp. 805-806
[102] Refinements and additional characterization of an 8–12 μm tandem OPO design (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 525-528
[103] R.K. Shori, O.M. Stafsudd, N.S. Prasad, G. Catella, High energy AgGaSe2 optical parametric oscillator operating in 5.7–7 μm region, in: Nonlinear Optics: Materials, Fundamentals, and Applications, 2000, pp. 179–181, Technical Digest
[104] Tunable output around 8 μm from a single step AgGaS2 OPO pumped at 1.064 μm (W.R. Bosenberg; M.M. Fejer, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 19, Optical Society of America, 1998, pp. 282-284
[105] 2.05-μm-laser-pumped orientation-patterned gallium arsenide (OPGaAs) OPO, Conference on Lasers and Electro-Optics, Optical Society of America, 2005 (Technical Digest, paper CThQ4)
[106] P.G. Schunemann, Advances in NLO crystals for infrared parametric sources, Oral presentation given at Journées Scientifiques de l'ONERA (2007)
[107] Kilohertz AgGaSe2 optical parametric oscillator pumped at 2 μm, Opt. Lett., Volume 18 (1993), pp. 1068-1070
[108] ZnGeP2 optical parametric oscillator with 3.8–12.4 μm tunability, Opt. Lett., Volume 25 (2000), pp. 841-843
[109] Tunable 7–12 μm optical parametric oscillator using a Cr,Er:YSGG laser to pump CdSe and ZnGeP2 crystals, Opt. Lett., Volume 22 (1997), pp. 597-599
[110] Multi-wavelength, 1.5–10 μm tunable, tandem OPO (M. Fejer; H. Injeyan; U. Keller, eds.), Trends in Optics and Photonics, Advanced Solid-State Lasers, vol. 26, Optical Society of America, 1999, pp. 548-553
[111] Optical parametric oscillation in quasi-phase-matched GaAs, Opt. Lett., Volume 29 (2004), pp. 1912-1914
[112] Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs, Appl. Phys. B, Volume 85 (2006), pp. 199-206
Cité par Sources :
Commentaires - Politique