Comptes Rendus
Physics/Mathematical physics, theoretical physics
Radiative transfer limit of two-frequency Wigner distribution for random parabolic waves: An exact solution
[Limite du transfert radiatif de la distribution de Wigner à deux fréquences pour des ondes paraboliques aléatoires : une solution exacte]
Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 267-271.

Dans cette Note nous établissons la limite auto-moyennante dans le regime du transfert radiatif pour la distribution de Wigner á deux fréquences dans le cas classique d'ondes en milieu aléatoires. Suivant le rapport de la longueur d'onde à la longueur de corrélation l'équation limite est soit une équation intégrale de type Boltzmann soit une équation différentielle de type Fokker–Planck dans l'espace des phases. L'équation limite est utilisée pour estimer trois paramètres physiques : l'étalement spatial, la longueur de cohérence et la largeur de bande cohérente. Dans le cas longitudinal l'équation de type Fokker–Planck admet une solution exacte.

The present Note establishes the self-averaging, radiative transfer limit for the two-frequency Wigner distribution for classical waves in random media. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker–Planck-like differential equation in the phase space. The limiting equation is used to estimate three physical parameters: the spatial spread, the coherence length and the coherence bandwidth. In the longitudinal case, the Fokker–Planck-like equation can be solved exactly.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crhy.2007.01.001
Keywords: Radiative transfer, Two-frequency Wigner distribution, Spatial spread, Coherence length, Coherence bandwidth
Mot clés : Transfert radiatif, Distribution de Wigner á deux fréquences, Étalement spatial, Longueur de cohérence, Largeur de bande cohérente

Albert C. Fannjiang 1

1 Department of Mathematics, University of California, Davis, CA 95616, USA
@article{CRPHYS_2007__8_2_267_0,
     author = {Albert C. Fannjiang},
     title = {Radiative transfer limit of two-frequency {Wigner} distribution for random parabolic waves: {An} exact solution},
     journal = {Comptes Rendus. Physique},
     pages = {267--271},
     publisher = {Elsevier},
     volume = {8},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crhy.2007.01.001},
     language = {en},
}
TY  - JOUR
AU  - Albert C. Fannjiang
TI  - Radiative transfer limit of two-frequency Wigner distribution for random parabolic waves: An exact solution
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 267
EP  - 271
VL  - 8
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.01.001
LA  - en
ID  - CRPHYS_2007__8_2_267_0
ER  - 
%0 Journal Article
%A Albert C. Fannjiang
%T Radiative transfer limit of two-frequency Wigner distribution for random parabolic waves: An exact solution
%J Comptes Rendus. Physique
%D 2007
%P 267-271
%V 8
%N 2
%I Elsevier
%R 10.1016/j.crhy.2007.01.001
%G en
%F CRPHYS_2007__8_2_267_0
Albert C. Fannjiang. Radiative transfer limit of two-frequency Wigner distribution for random parabolic waves: An exact solution. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 267-271. doi : 10.1016/j.crhy.2007.01.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.01.001/

[1] A. Ishimaru Wave Propagation and Scattering in Random Media, vols. I & II, Academic Press, New York, 1978

[2] A. Fannjiang Self-averaging scaling limits for random parabolic waves, Arch. Rat. Mech. Anal., Volume 175 (2005) no. 3, pp. 343-387

[3] A. Fannjiang Self-averaging radiative transfer for parabolic waves, C. R. Math., Volume 342 (2006), pp. 109-114

[4] M. Mishchenko; L. Travis; A. Lacis Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge Univ. Press, Cambridge, 2006

[5] L. Ryzhik; G. Papanicolaou; J.B. Keller Transport equations for elastic and other waves in random media, Wave Motion, Volume 24 (1996), pp. 327-370

[6] A. Fannjiang White-noise and geometrical optics limits of Wigner–Moyal equation for wave beams in turbulent media II. Two-frequency Wigner distribution formulation, J. Stat. Phys., Volume 120 (2005), pp. 543-586

[7] A. Fannjiang Self-averaging scaling limits of two-frequency Wigner distribution for random parabolic waves | arXiv

[8] A. Fannjiang Information transfer in disordered media by broadband time reversal: stability, resolution and capacity, Nonlinearity, Volume 19 (2006), pp. 2425-2439

[9] A. Derode; A. Tourin; J. de Rosny; M. Tanter; S. Yon; M. Fink Taking advantage of multiple scattering to communicate with time-reversal antennas, Phys. Rev. Lett., Volume 90 (2003) (014301)

[10] A. Derode; A. Tourin; M. Fink Random multiple scattering of ultrasound. II. Is time reversal a self-averaging process?, Phys. Rev. E, Volume 64 (2001) (036606)

[11] P. Blomgren; G. Papanicolaou; H. Zhao Super-resolution in time-reversal acoustics, J. Acoust. Soc. Amer., Volume 111 (2002), p. 230

Cité par Sources :

The research is supported in part by National Science Foundation Grant No. DMS-0306659, ONR Grant N00014-02-1-0090 and Darpa Grant N00014-02-1-0603.

Commentaires - Politique