[Détecter des planètes extra-solaires avec le télescope spatial japonais de 3.5 m SPICA]
Nous présentons le télescope spatial SPICA (SPace Infrared telescope for Cosmology and Astrophysics) dont la date de lancement est prévue aux alentours de 2015 grâce au lanceur japonais HII-A. Nous discutons plus spécifiquement de son utilisation pour la detection et l'observation directe des planètes extra-solaires. Ce télescope refroidi à 4,5 K, avec son miroir monolithique de 3,5 m, est principalement conçu pour observer dans l'infra-rouge moyen et lointain, et jusqu'aux longueurs d'ondes submillimétriques (200 μm). En raison de la faible résolution angulaire à ces longueurs d'ondes, la partie basse du spectre (de 5 à 20 μm) sera utilisée pour l'imagerie à très haute dynamique par coronographie. Cet article décrit le projet du coronographe de SPICA du point de vue des objectifs scientifiques, mais également de nos efforts dans l'étude d'un concept coronographique compatible avec les contraintes imposées par l'architecture du télescope.
We present the 3.5 m SPace Infrared telescope for Cosmology and Astrophysics (SPICA) space telescope, the launch of which is schedule around year 2015 by the Japanese HII-A rocket, and specifically discuss its use in the context of direct observation of extra-solar planets. This actively cooled (4.5 K), single aperture telescope will operate in the mid and far infrared spectral regions, and up to submillimetric wavelengths (200 μm). The lowest spectral region (5 to 20 μm), where the spatial resolution is the most favorable, will be dedicated to high contrast imaging with coronagraphy. This article describes the SPICA coronagraph project in terms of science, as well as our efforts to study a suitable instrumental concept, compatible with the constraints of the telescope architecture.
Mot clés : Exoplanètes, Coronographie, Spectroscopie, Télescope spatial
Lyu Abe 1 ; Keigo Enya 2 ; Shinichiro Tanaka 2, 3 ; Takao Nakagawa 2 ; Hirokazu Kataza 2 ; Motohide Tamura 1 ; Olivier Guyon 4
@article{CRPHYS_2007__8_3-4_374_0, author = {Lyu Abe and Keigo Enya and Shinichiro Tanaka and Takao Nakagawa and Hirokazu Kataza and Motohide Tamura and Olivier Guyon}, title = {Detecting extra-solar planets with the {Japanese} 3.5 m {SPICA} space telescope}, journal = {Comptes Rendus. Physique}, pages = {374--384}, publisher = {Elsevier}, volume = {8}, number = {3-4}, year = {2007}, doi = {10.1016/j.crhy.2007.02.007}, language = {en}, }
TY - JOUR AU - Lyu Abe AU - Keigo Enya AU - Shinichiro Tanaka AU - Takao Nakagawa AU - Hirokazu Kataza AU - Motohide Tamura AU - Olivier Guyon TI - Detecting extra-solar planets with the Japanese 3.5 m SPICA space telescope JO - Comptes Rendus. Physique PY - 2007 SP - 374 EP - 384 VL - 8 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2007.02.007 LA - en ID - CRPHYS_2007__8_3-4_374_0 ER -
%0 Journal Article %A Lyu Abe %A Keigo Enya %A Shinichiro Tanaka %A Takao Nakagawa %A Hirokazu Kataza %A Motohide Tamura %A Olivier Guyon %T Detecting extra-solar planets with the Japanese 3.5 m SPICA space telescope %J Comptes Rendus. Physique %D 2007 %P 374-384 %V 8 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2007.02.007 %G en %F CRPHYS_2007__8_3-4_374_0
Lyu Abe; Keigo Enya; Shinichiro Tanaka; Takao Nakagawa; Hirokazu Kataza; Motohide Tamura; Olivier Guyon. Detecting extra-solar planets with the Japanese 3.5 m SPICA space telescope. Comptes Rendus. Physique, Volume 8 (2007) no. 3-4, pp. 374-384. doi : 10.1016/j.crhy.2007.02.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.02.007/
[1] A Jupiter-mass companion to a solar-type star, Nature, Volume 378 ( Nov. 23, 1995 ), pp. 355-359 (no. 06555)
[2] A transiting “51 Peg-like” planet, Astrophys. J., Volume 529 (2000) no. 1, p. L41-L44
[3] Detection of planetary transits across a Sun-like star, Astrophys. J. Lett., Volume 529 (2000), p. 45
[4] SPICA: space infrared telescope for cosmology and astrophysics, Adv. Sp. Res., Volume 34 (2004), p. 645
[5] Development of large aperture cooled telescopes for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission, Proc. SPIE, Volume 5494 (2005), pp. 448-462
[6] ISAS Report SP, 14 (2000), p. 3
[7] L. Abe, M. Tamura, T. Nakagawa, K. Enya, S. Tanaka, K. Fujita, J. Nishikawa, N. Murakami, H. Kataza, Current status of the coronagraphic mode for the 3.5 m SPICA space telescope, in: Proc. of the IAU Colloquium 200, 2006, pp. 329–334
[8] Development of an MIR coronagraph for the SPICA mission, Proc. of SPIE, Volume 6265 (2006), p. 626536
[9] et al. TPF-C: status and recent progress, Proc. SPIE, Volume 6268 (2006), p. 62680
[10] Status of the terrestrial planet finder interferometer (TPF-I), Proc. SPIE, Volume 6268 (2006), p. 62680
[11] The DARWIN Project, Astrophys. Space Sci., Volume 241 (1996) no. 1, pp. 135-146
[12] M. Tamura, L. Abe, Direct explorations of exoplanets with the Subaru telescope and beyond, in: Proc. of the IAU Colloquium 200, 2006, pp. 323–328
[13] CIAO: Coronagraphic Imager with Adaptive Optics on the Subaru telescope, Publ. Astron. Soc. Japan, Volume 56 (2004), pp. 509-519
[14] et al. Concept and science of HiCIAO: high contrast instrument for the Subaru next generation adaptive optics, Proc. SPIE, Volume 6269 (2006), p. 62690
[15] Cryogenic infrared mission “JAXA/SPICA” with advanced cryocoolers, Cryogenics, Volume 46 (2006), pp. 149-157
[16] Infrared observations of the Uranian system, Science, Volume 233 (1986), pp. 70-74
[17] Infrared observations of the Neptunian system, Science, Volume 246 (1989), pp. 1454-1459
[18] Evolution and Spectra of Extrasolar Giant Planets, Infrared Space Interferometry: Astrophysics & the Study of Earth-Like Planets, Kluwer Academic, 1997 (p. 37)
[19] The helium abundance of Jupiter from Voyager, J. Geophys. Res., Volume 86 ( Sept. 30, 1981 ), pp. 8713-8720
[20] Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging, Astron. Astrophys., Volume 404 (2004), pp. 379-387
[21] Extrasolar planet finding via optimal apodized-pupil and shaped-Pupil coronagraphs, Astrophys. J., Volume 582 (2003), pp. 1147-1161
[22] On representing and correcting wavefront errors in high-contrast imaging systems, J. Opt. Soc. Am. A, Volume 23 (2006) no. 5, pp. 1063-1073
[23] Progr. Opt., 3 (1964), pp. 29-186
[24] Checkerboard-mask coronagraphs for high-contrast imaging, Astrophys. J., Volume 615 (2004), pp. 555-561
[25] Laboratory experiment of checkerboard pupil mask coronagraph, Astron. Astrophys., Volume 461 (2007), pp. 783-787
[26] Binary shaped pupil coronagraphs for high-contrast imaging using a space telescope with central obstructions, Publ. Astron. Soc. Japan, Volume 58 (2006), pp. 627-639
[27] Total coronagraphic extinction of rectangular apertures using linear prolate apodizations, Astron. Astrophys., Volume 389 (2002), pp. 334-344
[28] Stellar coronagraphy with prolate apodized circular apertures, Astron. Astrophys., Volume 397 (2003), pp. 1161-1172
[29] Apodized pupil Lyot coronagraphs for arbitrary telescope apertures, Astrophys. J., Volume 618 (2005), p. L161-L164
[30] Multiple-stage apodized pupil Lyot coronagraph for high-contrast imaging, Proc. SPIE, Volume 5490 (2004), pp. 456-461
[31] http://www.canyonmaterials.com/
[32] et al. Occulting focal plane masks for terrestrial planet finder coronagraph: Design, fabrication, simulations and test results (C. Aime; F. Vakili, eds.), Proceedings of the IAU Colloquium, vol. 200, Cambridge University Press, 2006, pp. 405-410
[33] Measurement of wavefront phase delay and optical density in apodized coronagraphic mask materials, Proc. SPIE, Volume 5905 (2005), pp. 473-482
[34] Two mirror unobscured optical system for reshaping the irradiance distribution of a laser beam, Appl. Opt., Volume 31 (1992) no. 22, pp. 4377-4383
[35] Two-mirror apodization for high-contrast imaging, Astrophys. J., Volume 599 (2003) no. 1, pp. 695-701
Cité par Sources :
Commentaires - Politique