Comptes Rendus
Imaging exoplanets with coronagraphic instruments
[Imager des exoplanètes grâce aux instruments coronographiques]
Comptes Rendus. Physique, Volume 24 (2023) no. S2, pp. 69-113.

L’exoplanétologie est un domaine très actif de l’astronomie moderne avec des questions encore ouvertes : comment les systèmes planétaires se forment-ils et évoluent-ils ; pourquoi une telle diversité d’exoplanètes est-elle observée (masse, rayon, paramètres orbitaux, température, composition) ; quelles sont les interactions entre les planètes, les disques circumstellaires et leur étoile hôte ? Plusieurs méthodes complémentaires sont utilisées pour la détection d’exoplanètes. Parmi celles-ci, l’imagerie permet la détection directe de la lumière réfléchie, diffusée ou émise par les exoplanètes et les disques circumstellaires. Ceci permet une caractérisation spectrale et polarimétrique. Obtenir une image d’exoplanète n’est cependant pas simple en raison du grand rapport de luminosité (104-1010) et de la faible séparation angulaire (fraction de seconde d’angle) entre l’étoile et son environnement. Depuis deux décennies, de nombreuses techniques, dont la coronographie, ont été développées pour faire de l’imagerie des exoplanètes une réalité.

Cet article donne un large aperçu des sous-systèmes d’un instrument coronographique. Il a été écrit en particulier pour les non-spécialistes ou les nouveaux venus dans le domaine. Nous décrivons le fonctionnement de la coronographie et en proposons un formalisme mathématique. Nous expliquons la formation des tavelures stellaires et l’impact des aberrations de la surface d’onde sur les performances du coronographe. Nous présentons enfin les techniques instrumentales et de traitement du signal utilisées pour améliorer les performances des coronographes en minimisant activement ou en étalonnant a posteriori ces tavelures.

Exoplanetary science is a very active field of astronomy nowadays, with questions still opened such as how planetary systems form and evolve (occurrence, process), why such a diversity of exoplanets is observed (mass, radius, orbital parameters, temperature, composition), and what are the interactions between planets, circumstellar disk and their host star. Several complementary methods are used for the detection of exoplanets. Among these, imaging aims at the direct detection of the light reflected, scattered or emitted by exoplanets and circumstellar disks. This allows their spectral and polarimetric characterization. Such imaging remains challenging because of the large luminosity ratio (104-1010) and the small angular separation (fraction of an arcsecond) between the star and its environment. Over the past two decades, numerous techniques, including coronagraphy, have been developed to make exoplanet imaging a reality.

This paper gives a broad overview of the subsystems that make up a coronagraphic instrument for imaging exoplanetary systems. It is especially intended for non-specialists or newcomers in the field. We explain the principle of coronagraphy and propose a formalism to understand their behavior. We discuss the impact of wavefront aberrations on the performance of coronagraphs and how they induce stellar speckles in the scientific image. Finally, we present instrumental and signal processing techniques used for on-sky minimization or a posteriori calibration of these speckles in order to improve the performance of coronagraphs.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.133
Keywords: Exoplanets, Astronomical Instrumentation, Coronagraphy, high-contrast imaging, high-angular resolution
Mot clés : Exoplanètes, Instrumentation astronomique, Coronographie, Imagerie Haut-contraste, Haute résolution angulaire

Raphaël Galicher 1 ; Johan Mazoyer 2

1 LESIA, Observatoire de Paris, Université PSL, CNRS, Université Paris Cité, Sorbonne Université, 5 place Jules Janssen, 92195 Meudon, France
2 LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_69_0,
     author = {Rapha\"el Galicher and Johan Mazoyer},
     title = {Imaging exoplanets with coronagraphic instruments},
     journal = {Comptes Rendus. Physique},
     pages = {69--113},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S2},
     year = {2023},
     doi = {10.5802/crphys.133},
     language = {en},
}
TY  - JOUR
AU  - Raphaël Galicher
AU  - Johan Mazoyer
TI  - Imaging exoplanets with coronagraphic instruments
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 69
EP  - 113
VL  - 24
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.133
LA  - en
ID  - CRPHYS_2023__24_S2_69_0
ER  - 
%0 Journal Article
%A Raphaël Galicher
%A Johan Mazoyer
%T Imaging exoplanets with coronagraphic instruments
%J Comptes Rendus. Physique
%D 2023
%P 69-113
%V 24
%N S2
%I Académie des sciences, Paris
%R 10.5802/crphys.133
%G en
%F CRPHYS_2023__24_S2_69_0
Raphaël Galicher; Johan Mazoyer. Imaging exoplanets with coronagraphic instruments. Comptes Rendus. Physique, Volume 24 (2023) no. S2, pp. 69-113. doi : 10.5802/crphys.133. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.133/

[1] Thérèse Encrenaz; Jean-Pierre Bibring; M. Blanc et al. The Solar System, Astronomy and Astrophysics Library, Springer Science & Business Media, 2013 | DOI

[2] Bruce A. Macintosh; James R. Graham; Travis F. Barman et al. Discovery and Spectroscopy of the Young Jovian Planet 51 Eri b with the Gemini Planet Imager, Science, Volume 350 (2015), pp. 64-67 | DOI

[3] Vanessa P. Bailey; Sergi Hildebrandt Rafels; Bijan Nemati; Brian D. Kern CGI-flux-ratio-plot, 2022 (GitHub, https://github.com/nasavbailey/DI-flux-ratio-plot)

[4] Rainer Lenzen; Markus Hartung; Wolfgang Brandner et al. NAOS-CONICA First on-Sky Results in a Variety of Observing Modes, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (Proceedings of the SPIE), Volume 4841, SPIE (2003), pp. 944-952 | DOI

[5] Gérard Rousset; Francois Lacombe; Pascal Puget et al. NAOS, the First AO System of the VLT: On-Sky Performance, Adaptive Optical System Technologies II (Proceedings of the SPIE), Volume 4839, SPIE (2003), pp. 140-149 | DOI

[6] Ian S. McLean; David Sprayberry Instrumentation at the Keck observatory, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (Masanori Iye; Alan F. M. Moorwood, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 4841, SPIE (2003), pp. 1-6 | DOI

[7] Peter L. Wizinowich Optical engineering at Keck Observatory: design and performance of the telescopes, adaptive optics and interferometer, ICO20: Optical Design and Fabrication (James Breckinridge; Yongtian Wang, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 6034 (2006), 603401 | DOI

[8] Douglas W. Toomey; Christ Ftaclas Near Infrared Coronagraphic Imager for Gemini South, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (Proceedings of the SPIE), Volume 4841 (2003), pp. 889-900 | DOI

[9] K. W. Hodapp; J. B. Jensen; E. M. Irwin et al. The Gemini Near-Infrared Imager (NIRI), The Publications of the Astronomical Society of the Pacific, Volume 115 (2003) no. 814, pp. 1388-1406 | DOI

[10] G. Herriot; S. Morris; A. Anthony et al. Progress on Altair: the Gemini North adaptive optics system, Adaptive Optical Systems Technology (P. L. Wizinowich, ed.) (SPIE Conference Series), Volume 4007, SPIE (2000), pp. 115-125 | DOI

[11] Jean-Luc Beuzit; Arthur Vigan; David Mouillet et al. SPHERE: The Exoplanet Imager for the Very Large Telescope, Astronomy & Astrophysics, Volume 631 (2019), A155 | DOI

[12] Bruce A. Macintosh; James R. Graham; David W. Palmer et al. The Gemini Planet Imager: From Science to Design to Construction, Adaptive Optics Systems (Proceedings of the SPIE), Volume 7015, SPIE (2008), p. 701518 | DOI

[13] Suresh Sivanandam; Philip M. Hinz; Ari N. Heinze; Melanie Freed; Andrew H. Breuninger Clio: A 3-5 Micron AO Planet-Finding Camera, Ground-based and Airborne Instrumentation for Astronomy (Proceedings of the SPIE), Volume 6269, SPIE (2006), pp. 288-297 | DOI

[14] Laird M. Close; Victor Gasho; Derek Kopon et al. The Magellan Telescope Adaptive Secondary AO System: A Visible and Mid-IR AO Facility, Adaptive Optics Systems II (Proceedings of the SPIE), Volume 7736, SPIE (2010), pp. 58-69 | DOI

[15] Nemanja Jovanovic; Frantz Martinache; Olivier Guyon et al. The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales, Publications of the Astronomical Society of the Pacific, Volume 127 (2015) no. 955, pp. 890-910 | DOI

[16] Glenn Schneider; Rodger I. Thompson; Bradford A. Smith; Richard J. Terrile Exploration of the Environments of Nearby Stars with the NICMOS Coronagraph: Instrumental Performance Considerations, Space Telescopes and Instruments V (Proceedings of the SPIE), Volume 3356, SPIE (1998), pp. 222-233 | DOI

[17] John E. Krist; George F. Hartig; Mark Clampin et al. Advanced Camera for Surveys Coronagraph on the Hubble Space Telescope, High-Contrast Imaging for Exo-Planet Detection (Proceedings of the SPIE), Volume 4860, SPIE (2003), pp. 20-31 | DOI

[18] Carol A. Grady; C. R. Proffitt; E. Malumuth; B. E. Woodgate; T. R. Gull et al. Coronagraphic Imaging with the Hubble Space Telescope and the Space Telescope Imaging Spectrograph, Publications of the Astronomical Society of the Pacific, Volume 115 (2003), pp. 1036-1049 (ADS Bibcode: 2003PASP..115.1036G) | DOI

[19] Charles A. Beichman; Marcia Rieke; Daniel Eisenstein et al. Science Opportunities with the Near-IR Camera (NIRCam) on the James Webb Space Telescope (JWST), Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Volume 8442, SPIE (2012), 84422N, pp. 973-983 | DOI

[20] Anthony Boccaletti; P.-O. Lagage; Pierre Baudoz et al. The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs, Publications of the Astronomical Society of the Pacific, Volume 127 (2015), pp. 633-645 | DOI

[21] Julien Rameau; G. Chauvin; Anne-Marie Lagrange et al. Confirmation of the Planet around HD 95086 by Direct Imaging, The Astrophysical Journal Letters, Volume 779 (2013), L26 | DOI

[22] Christian Marois; Bruce A. Macintosh; Travis F. Barman et al. Direct Imaging of Multiple Planets Orbiting the Star HR 8799, Science, Volume 322 (2008) no. 5906, pp. 1348-1352 | DOI

[23] Christian Marois; B. Zuckerman; Quinn M. Konopacky; Bruce A. Macintosh; Travis F. Barman Images of a Fourth Planet Orbiting HR 8799, Nature, Volume 468 (2010) no. 7327, pp. 1080-1083 | DOI

[24] G. Chauvin; S. Desidera; Anne-Marie Lagrange et al. Discovery of a Warm, Dusty Giant Planet around HIP 65426, Astronomy & Astrophysics, Volume 605 (2017), L9 | DOI

[25] Anne-Marie Lagrange; Damien Gratadour; G. Chauvin et al. A Probable Giant Planet Imaged in the β Pictoris Disk. VLT/NaCo Deep L’-Band Imaging, Astronomy & Astrophysics, Volume 493 (2009), p. L21-L25 | DOI

[26] Thayne Currie; Kellen Lawson; Glenn Schneider et al. Images of Embedded Jovian Planet Formation at a Wide Separation around AB Aurigae, Nature Astronomy, Volume 6 (2022), p. 751–759 | DOI

[27] M. Keppler; M. Benisty; A. Müller et al. Discovery of a Planetary-Mass Companion within the Gap of the Transition Disk around PDS 70, Astronomy & Astrophysics, Volume 617 (2018), A44 | DOI

[28] John E. Krist; Robert Effinger; Brian D. Kern et al. WFIRST Coronagraph Flight Performance Modeling, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 10698, SPIE (2018), 106982K | DOI

[29] Bertrand Mennesson; Roser Juanola-Parramon; Bijan Nemati et al. Paving the Way to Future Missions: The Roman Space Telescope Coronagraph Technology Demonstration (2020) (https://arxiv.org/abs/2008.05624)

[30] B. Scott Gaudi; Sara Seager; Bertrand Mennesson et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report (2020) (https://arxiv.org/abs/2001.06683)

[31] The LUVOIR Team The LUVOIR Mission Concept Study Final Report (2019) (https://arxiv.org/abs/1912.06219)

[32] G. Chauvin Direct Imaging of Exoplanets: Results & Perspectives, C. R. Phys., Volume 24 (2023) no. S2, pp. 129-150 | DOI

[33] Anthony Boccaletti Observations of circumstellar disks in scattered light with SPHERE at the VLT, C. R. Phys., Volume 24 (2023) no. S2, pp. 151-169 | DOI

[34] Laurent A. Pueyo Direct Imaging as a Detection Technique for Exoplanets, Handbook of Exoplanets, Springer, Cham, 2018, pp. 1-61 | DOI

[35] R. N. Bracewell Detecting Nonsolar Planets by Spinning Infrared Interferometer, Nature, Volume 274 (1978) no. 5673, pp. 780-781 | DOI

[36] Philip M. Hinz; D. Defrère; Andy J. Skemer et al. Overview of LBTI: a multipurpose facility for high spatial resolution observations, Optical and Infrared Interferometry and Imaging V (Fabien Malbet; Michelle J. Creech-Eakman; Peter G. Tuthill, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9907, SPIE (2016), 990704 | DOI

[37] Steve Ertel; D. Defrère; Philip M. Hinz et al. The HOSTS Survey for Exozodiacal Dust: Observational Results from the Complete Survey, The Astronomical Journal, Volume 159 (2020), 177 | DOI

[38] S. Lacour Astrometry of directly imaged exoplanets with optical interferometry, C. R. Phys., Volume 24 (2023) no. S2, pp. 115-128 | DOI

[39] C. E. Kenknight Methods of Detecting Extrasolar Planets. I. Imaging, Icarus, Volume 30 (1977) no. 2, pp. 422-433 | DOI

[40] P. Jacquinot; B. Roizen-Dossier II Apodisation, Progress in Optics, Volume 3 (1964), pp. 29-186 | DOI

[41] François Roddier; C. Roddier Stellar Coronograph with Phase Mask, Publications of the Astronomical Society of the Pacific, Volume 109 (1997) no. 737, pp. 815-820 | DOI

[42] D. Rouan; Pierre Riaud; Anthony Boccaletti; Y. Clénet; A. Labeyrie The Four-Quadrant Phase-Mask Coronagraph. I. Principle, Publications of the Astronomical Society of the Pacific, Volume 112 (2000), pp. 1479-1486 | DOI

[43] D. Mawet; Pierre Riaud; Olivier Absil; Jean Surdej Annular Groove Phase Mask Coronagraph, The Astrophysical Journal, Volume 633 (2005) no. 2, pp. 1191-1200

[44] Rémi Soummer Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures, The Astrophysical Journal, Volume 618 (2005) no. 2, p. L161-L164 | DOI

[45] Naoshi Murakami; R. Uemura; N. Baba et al. An Eight-Octant Phase-Mask Coronagraph, Publication of the Astronomical Society of Pacific, Volume 120 (2008), pp. 1112-1118 | DOI

[46] Raphaël Galicher; Elsa Huby; Pierre Baudoz; Olivier Dupuis A Family of Phase Masks for Broadband Coronagraphy Example of the Wrapped Vortex Phase Mask Theory and Laboratory Demonstration, Astronomy & Astrophysics, Volume 635 (2020), A11 | DOI

[47] Rémi Soummer; C. Aime; P. E. Falloon Stellar coronagraphy with prolate apodized circular apertures, Astronomy & Astrophysics, Volume 397 (2003), pp. 1161-1172 | DOI

[48] John T. Trauger; Dwight C. Moody; John E. Krist; Brian Gordon Hybrid Lyot Coronagraph for WFIRST-AFTA: Coronagraph Design and Performance Metrics, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 2 (2016), 011013 | DOI

[49] Bernard Lyot Étude de La Couronne Solaire En Dehors Des Éclipses, Zeitschrift fur Astrophysik, Volume 5 (1932), pp. 73-95

[50] Jeremy N. Kasdin; Robert J. Vanderbei; David N. Spergel; Michael G. Littman Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs, The Astrophysical Journal, Volume 582 (2003), pp. 1147-1161 | DOI

[51] Johanan L. Codona; Matthew A. Kenworthy; Philip M. Hinz; J. Roger P. Angel; N. J. Woolf A high-contrast coronagraph for the MMT using phase apodization: design and observations at 5 microns and 2 λ/D radius, Ground-based and Airborne Instrumentation for Astronomy (Ian S. McLean; Masanori Iye, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 6269 (2006), 62691N | DOI

[52] Olivier Guyon Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging, Astronomy & Astrophysics, Volume 404 (2003), pp. 379-387 | DOI

[53] Matthew A. Kenworthy; Johanan L. Codona; Philip M. Hinz et al. First On-Sky High-Contrast Imaging with an Apodizing Phase Plate, The Astrophysical Journal, Volume 660 (2007) no. 1, pp. 762-769 | DOI

[54] Frans Snik; Gilles Otten; Matthew A. Kenworthy; Matthew Miskiewicz; Michael J. Escuti; Christopher Packham; Johanan L. Codona The vector-APP: a broadband apodizing phase plate that yields complementary PSFs, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II (Ramón Navarro; Colin R. Cunningham; Eric Prieto, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8450 (2012), 84500M | DOI

[55] David S. Doelman; Frans Snik; Emiel H. Por et al. Vector-Apodizing Phase Plate Coronagraph: Design, Current Performance, and Future Development [Invited], Applied Optics, Volume 60 (2021), p. D52-D72 (ADS Bibcode: 2021ApOpt..60D..52D) | DOI

[56] Joseph W. Goodman Introduction to Fourier Optics, McGraw-Hill physical and quantum electronics series, Roberts and Company Publishers, 2005

[57] Amir Give’on; Ruslan Belikov; Stuart B. Shaklan; Jeremy N. Kasdin Closed Loop, DM Diversity-Based, Wavefront Correction Algorithm for High Contrast Imaging Systems, Optics Express, Volume 15 (2007) no. 19, pp. 12338-12343 | DOI

[58] Olivier Guyon; Eugene Pluzhnik; Marc J. Kuchner; B. Collins; S. T. Ridgway Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs, Astrophysical Journal, Supplement, Volume 167 (2006) no. 1, pp. 81-99 | DOI

[59] Emiel H. Por; Sebastiaan Y. Haffert; V. M. Radhakrishnan et al. High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator, Adaptive Optics Systems VI (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10703, SPIE (2018), 1070342 | DOI

[60] Fanzhen Hou; Qing Cao; Minning Zhu; Ourui Ma Wide-band six-region phase mask coronagraph, Optics Express, Volume 22 (2014) no. 2, pp. 1884-1895 | DOI

[61] Marc J. Kuchner; Wesley A. Traub A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets, The Astrophysical Journal, Volume 570 (2002), pp. 900-908 | DOI

[62] Anand Sivaramakrishnan; Natalia Yaitskova Lyot Coronagraphy on Giant Segmented-Mirror Telescopes, The Astrophysical Journal, Volume 626 (2005) no. 1, p. L65-L68 | DOI

[63] D. Mawet; Laurent A. Pueyo; Alexis Carlotti et al. Ring-Apodized Vortex Coronagraphs for Obscured Telescopes. I. Transmissive Ring Apodizers, The Astrophysical Journal Supplement Series, Volume 209 (2013), 7 | DOI

[64] Keigo Enya; Lyu Abe A Binary Shaped Mask Coronagraph for a Segmented Pupil, Publications of the Astronomical Society of Japan, Volume 62 (2010), pp. 1407-1411 | DOI

[65] Alexis Carlotti Apodized Phase Mask Coronagraphs for Arbitrary Apertures, Astronomy & Astrophysics, Volume 551 (2013), A10 | DOI

[66] Olivier Guyon; Philip M. Hinz; Eric Cady; Ruslan Belikov; Frantz Martinache High Performance Lyot and PIAA Coronagraphy for Arbitrarily Shaped Telescope Apertures, The Astrophysical Journal, Volume 780 (2014), 171 | DOI

[67] Kanae Haze; Keigo Enya; Lyu Abe et al. Experimental demonstration of binary shaped pupil mask coronagraphs for telescopes with obscured pupils, Publications of the Astronomical Society of Japan, Volume 67 (2015) no. 2, 28 | DOI

[68] Garreth J. Ruane; Elsa Huby; Olivier Absil et al. Lyot-Plane Phase Masks for Improved High-Contrast Imaging with a Vortex Coronagraph, Astronomy & Astrophysics, Volume 583 (2015), A81 | DOI

[69] Neil T. Zimmerman; A. J. Eldorado Riggs; N. Jeremy Kasdin et al. Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 2 (2016), 011012 | DOI

[70] Mamadou N’Diaye; Kevin Fogarty; Rémi Soummer et al. Apodized Pupil Lyot coronagraphs with arbitrary aperture telescopes: novel designs using hybrid focal plane masks, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Makenzie Lystrup; Howard A. MacEwen; Giovanni G. Fazio; Natalie Batalha; Nicholas Siegler; Edward C. Tong, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10698 (2018), 106986A | DOI

[71] Laurent A. Pueyo; Colin Norman High-Contrast Imaging with an Arbitrary Aperture: Active Compensation of Aperture Discontinuities, The Astrophysical Journal, Volume 769 (2013), 102 | DOI

[72] Emiel H. Por Phase-apodized-pupil Lyot Coronagraphs for Arbitrary Telescope Pupils, The Astrophysical Journal, Volume 888 (2020) no. 2, 127 | DOI

[73] Kevin Fogarty; Laurent A. Pueyo; Johan Mazoyer; Mamadou N’Diaye Polynomial Apodizers for Centrally Obscured Vortex Coronagraphs, The Astronomical Journal, Volume 154 (2017), 240 | DOI

[74] Dimitri Mawet; Laurent A. Pueyo; Peter Lawson et al. Review of Small-Angle Coronagraphic Techniques in the Wake of Ground-Based Second-Generation Adaptive Optics Systems, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 8442, SPIE (2012), p. 844204 | DOI

[75] Garreth Ruane; A. Riggs; J. Mazoyer et al. Review of High-Contrast Imaging Systems for Current and Future Ground- and Space-Based Telescopes I: Coronagraph Design Methods and Optical Performance Metrics, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 10698 (2018), 106982S | DOI

[76] Anthony Boccaletti; Lyu Abe; Jacques Baudrand et al. Prototyping Coronagraphs for Exoplanet Characterization with SPHERE, Proceedings of the SPIE, Volume 7015 (2008), 70151B | DOI

[77] Anand Sivaramakrishnan; Rémi Soummer; Ben R. Oppenheimer et al. Gemini Planet Imager Coronagraph Testbed Results, Ground-based and Airborne Instrumentation for Astronomy III (Proceedings of the SPIE), Volume 7735, SPIE (2010), pp. 2922-2933 | DOI

[78] John H. Debes; Jian Ge High-Contrast Imaging with Gaussian Aperture Pupil Masks, Publications of the Astronomical Society of the Pacific, Volume 116 (2004) no. 821, pp. 674-681 | DOI

[79] Abhijit Chakraborty; Laird A. Thompson; Michael Rogosky 10 -7 contrast ratio at 4.5λ/D: New results obtained in laboratory experiments using nano-fabricated coronagraph and multi-Gaussian shaped pupil masks, Optics Express, Volume 13 (2005) no. 7, pp. 2394-2402 | DOI

[80] P. Martinez; Christophe Dorrer; E. Aller Carpentier et al. Design, analysis, and testing of a microdot apodizer for the Apodized Pupil Lyot Coronagraph, Astronomy & Astrophysics, Volume 495 (2009) no. 1, pp. 363-370 | DOI

[81] Alexis Carlotti; David Mouillet; Jean-Jacques Correia et al. Experimental test of a micro-mirror array as an adaptive apodizer for high-contrast imaging, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III (Ramón Navarro; Roland Geyl, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10706, SPIE (2018), 107062M | DOI

[82] Masato Kagitani; Takeshi Sakanoi; Yasumasa Kasaba; Shoichi Okano A coronagraph using a digital micromirror device as an adaptive occultation mask: design and observational result, Ground-based and Airborne Instrumentation for Astronomy VIII (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11447 (2020), 114479Y | DOI

[83] M. Bonafous; Raphaël Galicher; Pierre Baudoz; J. Firminy; F. Boussaha Development and characterization of Four-Quadrant Phase Mask coronagraph (FQPM), Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II (Ramón Navarro; James H. Burge, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9912, SPIE (2016), 99126J | DOI

[84] Garreth Ruane; Dimitri Mawet; A. J. Eldorado Riggs; Eugene Serabyn Scalar vortex coronagraph mask design and predicted performance, Techniques and Instrumentation for Detection of Exoplanets IX (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11117 (2019), 111171F | DOI

[85] Dimitri Mawet; Naoshi Murakami; Christian Delacroix et al. Taking the vector vortex coronagraph to the next level for ground- and space-based exoplanet imaging instruments: review of technology developments in the USA, Japan, and Europe, Techniques and Instrumentation for Detection of Exoplanets V (Stuart B. Shaklan, ed.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8151 (2011), 815108 | DOI

[86] Naoshi Murakami; Shoki Hamaguchi; Moritsugu Sakamoto et al. Design and laboratory demonstration of an achromatic vector vortex coronagraph, Optics Express, Volume 21 (2013) no. 6, pp. 7400-7410 | DOI

[87] David S. Doelman; Emiel H. Por; Garreth J. Ruane; Michael J. Escuti; Frans Snik Minimizing the Polarization Leakage of Geometric-phase Coronagraphs with Multiple Grating Pattern Combinations, Publications of the Astronomical Society of the Pacific, Volume 132 (2020) no. 1010, 045002 | DOI

[88] Avi Niv; Gabriel Biener; Vladimir Kleiner; Erez Hasman Polychromatic vectorial vortex formed by geometric phase elements, Optics Letters, Volume 32 (2007) no. 7, pp. 847-849 | DOI

[89] Christian Delacroix; Pontus Forsberg; Mikael Karlsson et al. Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings, Applied Optics, Volume 51 (2012) no. 24, pp. 5897-5902 | DOI

[90] Anthony Boccaletti; Lyu Abe; Jacques Baudrand et al. Prototyping coronagraphs for exoplanet characterization with SPHERE, Adaptive Optics Systems (Norbert Hubin; Claire E. Max; Peter L. Wizinowich, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 7015, SPIE (2008), 70151B | DOI

[91] Ruslan Belikov; Jeremy N. Kasdin; Robert J. Vanderbei Diffraction-based Sensitivity Analysis of Apodized Pupil-mapping Systems, The Astrophysical Journal, Volume 652 (2006) no. 1, pp. 833-844 | DOI

[92] B. Paul; Jean-François Sauvage; Laurent M. Mugnier Coronagraphic Phase Diversity: Performance Study and Laboratory Demonstration, Astronomy & Astrophysics, Volume 552 (2013), A48 | DOI

[93] Olivier Herscovici-Schiller; Laurent M. Mugnier; Pierre Baudoz et al. Experimental Validation of Joint Phase and Amplitude Wave-Front Sensing with Coronagraphic Phase Diversity for High-Contrast Imaging, Astronomy & Astrophysics, Volume 614 (2018), A142 | DOI

[94] J. Mazoyer; Laurent A. Pueyo; Mamadou N’Diaye et al. Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. I. A New Adaptive Interaction Matrix Algorithm, The Astronomical Journal, Volume 155 (2018), 7 | DOI

[95] Kevin Fogarty; Dimitri Mawet; Johan Mazoyer; Dan Sirbu; Garreth J. Ruane; Laurent A. Pueyo Towards High Throughput and Low-Order Aberration Robustness for Vortex Coronagraphs with Central Obstructions, Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 11443, SPIE (2020), 114433Y | DOI

[96] Sasha Hinkley; Ben R. Oppenheimer; Rémi Soummer et al. Temporal Evolution of Coronagraphic Dynamic Range and Constraints on Companions to Vega, The Astrophysical Journal, Volume 654 (2007), pp. 633-640 | DOI

[97] P. Martinez; Markus Kasper; A. Costille et al. Speckle Temporal Stability in XAO Coronagraphic Images. II. Refine Model for Quasi-Static Speckle Temporal Evolution for VLT/SPHERE, Astronomy & Astrophysics, Volume 554 (2013), A41 | DOI

[98] Jared R. Males; Michael P. Fitzgerald; Ruslan Belikov; Olivier Guyon The Mysterious Lives of Speckles. I. Residual Atmospheric Speckle Lifetimes in Ground-based Coronagraphs, Publication of the Astronomical Society of Pacific, Volume 133 (2021) no. 1028, 104504, p. 18 | DOI

[99] Arthur Vigan; Kjetil Dohlen; Mamadou N’Diaye et al. Calibration of Quasi-Static Aberrations in Exoplanet Direct-Imaging Instruments with a Zernike Phase-Mask Sensor. IV. Temporal Stability of Non-Common Path Aberrations in VLT/SPHERE, Astronomy & Astrophysics, Volume 660 (2022), A140 | DOI

[100] Matthew D. Lallo; Russell B. Makidon; Stefano Casertano; John E. Krist Temporal Optical Behavior of HST: Focus, Coma, and Astigmatism History, Observatory Operations: Strategies, Processes, and Systems (Proceedings of the SPIE), Volume 6270, SPIE (2006), pp. 527-538 | DOI

[101] John E. Krist; Bijan Nemati; Bertrand Mennesson Numerical Modeling of the Proposed WFIRST-AFTA Coronagraphs and Their Predicted Performances, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 2 (2016) no. 1, 011003 | DOI

[102] Bradford A. Smith; Richard J. Terrile A Circumstellar Disk around β Pictoris, Science, Volume 226 (1984), pp. 1421-1424 | DOI

[103] François Roddier Adaptive Optics in Astronomy, Cambridge University Press, 1999

[104] Olivier Guyon Extreme Adaptive Optics, Annual Review of Astronomy & Astrophysics, Volume 56 (2018), pp. 315-355 | DOI

[105] Gérard Rousset; Thierry Fusco Optique adaptative : correction des effets de la turbulence atmosphérique sur les images astronomiques, C. R. Phys., Volume 23 (2022) no. S1, pp. 293-344 | DOI

[106] Marshall D. Perrin; Anand Sivaramakrishnan; Russell B. Makidon; Ben R. Oppenheimer; James R. Graham The Structure of High Strehl Ratio Point-Spread Functions, The Astrophysical Journal, Volume 596 (2003) no. 1, pp. 702-712

[107] Jean-François Sauvage; Laurent M. Mugnier; Gérard Rousset; Thierry Fusco Analytical Expression of Long-Exposure Adaptive-Optics-Corrected Coronagraphic Image First Application to Exoplanet Detection, Journal of the Optical Society of America A, Volume 27 (2010) no. 11, p. A157-A170 | DOI

[108] Olivier Herscovici-Schiller; Laurent M. Mugnier; Jean-François Sauvage An Analytic Expression for Coronagraphic Imaging through Turbulence. Application to on-Sky Coronagraphic Phase Diversity, Monthly Notices of the Royal Astronomical Society, Volume 467 (2017), p. L105-L109 | DOI

[109] Garima Singh; Raphaël Galicher; Pierre Baudoz et al. Active minimization of non-common path aberrations in long-exposure imaging of exoplanetary systems, Astronomy & Astrophysics, Volume 631 (2019), A106 | DOI

[110] Olivier Guyon; Julien Lozi; Sebastien Vievard et al. Validating advanced wavefront control techniques on the SCExAO testbed/instrument, Adaptive Optics Systems VII (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11448, SPIE (2020), 114481Z | DOI

[111] F. Cantalloube; Kjetil Dohlen; Julien Milli; Wolfgang Brandner; Arthur Vigan Peering through SPHERE Images: A Glance at Contrast Limitations, The Messenger, Volume 176 (2019), pp. 25-31 | DOI

[112] Olivier Guyon Limits of Adaptive Optics for High-Contrast Imaging, The Astrophysical Journal, Volume 629 (2005), pp. 592-614 | DOI

[113] Thierry Fusco; C. Petit; Gérard Rousset; Jean-François Sauvage; Kjetil Dohlen; David Mouillet et al. Design of the Extreme AO System for SPHERE, the Planet Finder Instrument of the VLT, Advances in Adaptive Optics II (Proceedings of the SPIE), Volume 6272, SPIE (2006), 62720K | DOI

[114] Olivier Guyon; Jared R. Males Adaptive Optics Predictive Control with Empirical Orthogonal Functions (EOFs) (2017) (https://arxiv.org/abs/1707.00570)

[115] Fang Shi; Eric Cady; Byoung-Joon Seo et al. Dynamic Testbed Demonstration of WFIRST Coronagraph Low Order Wavefront Sensing and Control (LOWFS/C), Techniques and Instrumentation for Detection of Exoplanets VIII, Volume 10400, SPIE (2017), pp. 74-90 | DOI

[116] M. Mas; Pierre Baudoz; Gérard Rousset; Raphaël Galicher Tip-Tilt Estimation and Correction Using FQPM Coronagraphic Images, Astronomy & Astrophysics, Volume 539 (2012), A126 | DOI

[117] Elsa Huby; Pierre Baudoz; D. Mawet; Olivier Absil Post-Coronagraphic Tip-Tilt Sensing for Vortex Phase Masks: The QACITS Technique, Astronomy & Astrophysics, Volume 584 (2015), A74 | DOI

[118] Garima Singh; Frantz Martinache; Pierre Baudoz et al. Lyot-Based Low Order Wavefront Sensor for Phase-mask Coronagraphs: Principle, Simulations and Laboratory Experiments, Publications of the Astronomical Society of the Pacific, Volume 126 (2014), pp. 586-594 | DOI

[119] F. Zernike Diffraction Theory of the Knife-Edge Test and Its Improved Form, the Phase-Contrast Method, Monthly Notices of the Royal Astronomical Society, Volume 94 (1934), pp. 377-384 | DOI

[120] James K. Wallace; Sam Crawford; Frank Loya; James Moore A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System, Adaptive Optics Systems III (Proceedings of the SPIE), Volume 8447 (2012), 84472K | DOI

[121] Mamadou N’Diaye; Kjetil Dohlen; Thierry Fusco; B. Paul Calibration of Quasi-Static Aberrations in Exoplanet Direct-Imaging Instruments with a Zernike Phase-Mask Sensor, Astronomy & Astrophysics, Volume 555 (2013), A94 | DOI

[122] Arthur Vigan; Mamadou N’Diaye; Kjetil Dohlen et al. Calibration of Quasi-Static Aberrations in Exoplanet Direct-Imaging Instruments with a Zernike Phase-Mask Sensor. III. On-sky Validation in VLT/SPHERE, Astronomy & Astrophysics, Volume 629 (2019), A11 | DOI

[123] Lucie Leboulleux; Jean-François Sauvage; Laurent A. Pueyo et al. Pair-Based Analytical Model for Segmented Telescopes Imaging from Space for Sensitivity Analysis, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 4 (2018) no. 3, 035002 | DOI

[124] Iva Laginja; Rémi Soummer; Laurent M. Mugnier et al. Analytical Tolerancing of Segmented Telescope Co-Phasing for Exo-Earth High-Contrast Imaging, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 7 (2021), 015004 | DOI

[125] D. Mawet; Julien Milli; Z. Wahhaj et al. Fundamental Limitations of High Contrast Imaging Set by Small Sample Statistics, The Astrophysical Journal, Volume 792 (2014) no. 2, 97, p. 11 | DOI

[126] J. Mazoyer; Laurent A. Pueyo; Mamadou N’Diaye et al. Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. II. Optimization for Future Missions, The Astronomical Journal, Volume 155 (2018), 8 | DOI

[127] Garreth Ruane; Jeffrey Jewell; Dimitri Mawet; Laurent A. Pueyo; Stuart B. Shaklan Apodized Vortex Coronagraph Designs for Segmented Aperture Telescopes, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II (Proceedings of the SPIE), Volume 9912 (2016), 99122L | DOI

[128] Mamadou N’Diaye; Rémi Soummer; Laurent A. Pueyo et al. Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. V. Hybrid Shaped Pupil Designs for Imaging Earth-like Planets with Future Space Observatories, The Astrophysical Journal, Volume 818 (2016), 163 | DOI

[129] Christopher C. Stark; Ruslan Belikov; Matthew R. Bolcar et al. ExoEarth Yield Landscape for Future Direct Imaging Space Telescopes, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 5 (2019) no. 2, 024009 | DOI

[130] Pierre Riaud; Anthony Boccaletti; D. Rouan; F. Lemarquis; A. Labeyrie The Four-Quadrant Phase-Mask Coronagraph. II. Simulations, Publications of the Astronomical Society of the Pacific, Volume 113 (2001), pp. 1145-1154 | DOI

[131] Rémi Soummer; Kjetil Dohlen; C. Aime Achromatic dual-zone phase mask stellar coronagraph, Astronomy & Astrophysics, Volume 403 (2003), pp. 369-381 | DOI

[132] Raphaël Galicher; Pierre Baudoz; Jacques Baudrand Multi-Stage Four-Quadrant Phase Mask: Achromatic Coronagraph for Space-Based and Ground-Based Telescopes, Astronomy & Astrophysics, Volume 530 (2011), A43 | DOI

[133] Mamadou N’Diaye; Kjetil Dohlen; S. Cuevas et al. Improved Achromatization of Phase Mask Coronagraphs Using Colored Apodization, Astronomy & Astrophysics, Volume 538 (2012), A55 | DOI

[134] Jacques-Robert Delorme; Raphaël Galicher; Pierre Baudoz et al. Focal Plane Wavefront Sensor Achromatization: The Multireference Self-Coherent Camera, Astronomy & Astrophysics, Volume 588 (2016), A136 | DOI

[135] Jacques-Robert Delorme; Mamadou N’Diaye; Raphaël Galicher et al. Laboratory Validation of the Dual-Zone Phase Mask Coronagraph in Broadband Light at the High-Contrast Imaging THD Testbed, Astronomy & Astrophysics, Volume 592 (2016), A119 | DOI

[136] Eric Cady; Kunjithapatham Balasubramanian; Jessica Gersh-Range et al. Shaped pupil coronagraphy for WFIRST: high-contrast broadband testbed demonstration, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Volume 10400 (2017), 104000E | DOI

[137] Dimitri Mawet; Laurent A. Pueyo; Alexis Carlotti et al. The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures, Techniques and Instrumentation for Detection of Exoplanets VI (Stuart Shaklan, ed.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8864 (2013), 886411 | DOI

[138] F. Malbet; J. W. Yu; M. Shao High-Dynamic-Range Imaging Using a Deformable Mirror for Space Coronography, Publications of the Astronomical Society of the Pacific, Volume 107 (1995), pp. 386-398 | DOI

[139] Pascal J. Bordé; Wesley A. Traub High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime, The Astrophysical Journal, Volume 638 (2006) no. 1, pp. 488-498 | DOI

[140] Jonas G. Kühn; Polychronis Patapis; Garreth J. Ruane; Xin Lu Implementing Focal-Plane Phase Masks Optimized for Real Telescope Apertures with SLM-based Digital Adaptive Coronagraphy, Optics Express, Volume 25 (2017) no. 14, pp. 16686-16700 | DOI

[141] Jonas G. Kühn; Laurent Jolissaint; Audrey Bouxin; Polychronis Patapis SLM-based Active Focal-Plane Coronagraphy: Status and Future on-Sky Prospects, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation IV (Proceedings of the SPIE), Volume 11451, SPIE (2021), pp. 378-386 | DOI

[142] Pierre-Yves Madec Overview of Deformable Mirror Technologies for Adaptive Optics and Astronomy, Adaptive Optics Systems III (Proceedings of the SPIE), Volume 8447, SPIE (2012), 844705 | DOI

[143] Lisa A. Poyneer; Jean-Pierre Véran Optimal Modal Fourier-transform Wavefront Control, Journal of the Optical Society of America A, Volume 22 (2005), pp. 1515-1526 | DOI

[144] J. Mazoyer; Pierre Baudoz; Raphaël Galicher; M. Mas; Gérard Rousset Estimation and Correction of Wavefront Aberrations Using the Self-Coherent Camera: Laboratory Results, Astronomy & Astrophysics, Volume 557 (2013), A9 | DOI

[145] Ping Zhou; James H. Burge Analysis of wavefront propagation using the Talbot effect, Applied Optics, Volume 49 (2010) no. 28, pp. 5351-5359 | DOI

[146] Stuart B. Shaklan; Joseph J. Green Reflectivity and Optical Surface Height Requirements in a Broadband Coronagraph. 1.Contrast Floor Due to Controllable Spatial Frequencies, Applied Optics, Volume 45 (2006), pp. 5143-5153 | DOI

[147] Laurent A. Pueyo; Jeremy N. Kasdin Polychromatic Compensation of Propagated Aberrations for High-Contrast Imaging, The Astrophysical Journal, Volume 666 (2007) no. 1, pp. 609-625 | DOI

[148] Mathilde Beaulieu; Lyu Abe; P. Martinez et al. High-Contrast Imaging at Small Separations: Impact of the Optical Configuration of Two Deformable Mirrors on Dark Holes, Monthly Notices of the Royal Astronomical Society, Volume 469 (2017), pp. 218-230 | DOI

[149] Mathilde Beaulieu; P. Martinez; Lyu Abe et al. High Contrast at Small Separation - II. Impact on the Dark Hole of a Realistic Optical Set-up with Two Deformable Mirrors, Monthly Notices of the Royal Astronomical Society, Volume 498 (2020), pp. 3914-3926 | DOI

[150] Johan Mazoyer; Laurent A. Pueyo Fundamental Limits to High-Contrast Wavefront Control, Techniques and Instrumentation for Detection of Exoplanets VIII (Proceedings of the SPIE), Volume 10400, SPIE (2017), 1040014 | DOI

[151] Tyler D. Groff; A. J. Eldorado Riggs; Brian D. Kern; N. Jeremy Kasdin Methods and Limitations of Focal Plane Sensing, Estimation, and Control in High-Contrast Imaging, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 2 (2016), 011009 | DOI

[152] Axel Potier Comparaison des techniques d’analyse de surface d’onde en plan focal dédiées aux missions spatiales d’imagerie directe et de spectroscopie des planètes extrasolaires, Ph. D. Thesis, Université Paris sciences et lettres, Paris, France (2020) (HAL_ID=tel-03065844, https://tel.archives-ouvertes.fr/tel-03065844)

[153] Amir Give’on; Brian D. Kern; Stuart B. Shaklan; Dwight C. Moody; Laurent A. Pueyo Broadband wavefront correction algorithm for high-contrast imaging systems, Astronomical Adaptive Optics Systems and Applications III (Robert K. Tyson; Michael Lloyd-Hart, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 6691, SPIE (2007), 66910A | DOI

[154] Laurent A. Pueyo; Jason Kay; Jeremy N. Kasdin et al. Optimal Dark Hole Generation via Two Deformable Mirrors with Stroke Minimization, Applied Optics, Volume 48 (2009), pp. 6296-6312 | DOI

[155] Raphaël Galicher; Pierre Baudoz; Gérard Rousset; J. Totems; M. Mas Self-Coherent Camera as a Focal Plane Wavefront Sensor: Simulations, Astronomy & Astrophysics, Volume 509 (2010), A31 | DOI

[156] Corinne Boyer; Vincent Michau; Gérard Rousset Adaptive Optics: Interaction Matrix Measurements and Real Time Control Algorithms for the COME-ON Project, Adaptive Optics and Optical Structures (Proceedings of the SPIE), Volume 1271, SPIE (1990), pp. 63-81 | DOI

[157] Olivier Herscovici-Schiller; Laurent M. Mugnier; Pierre Baudoz et al. Towards the Experimental Validation of the Non-Linear Dark Hole on the THD Bench, Adaptive Optics Systems VI (Proceedings of the SPIE), Volume 10703, SPIE (2018), 1070329 | DOI

[158] James R. Fienup Phase retrieval algorithms: a comparison, Applied Optics, Volume 21 (1982) no. 15, pp. 2758-2769 | DOI

[159] Nemanja Jovanovic; Olivier Absil; Pierre Baudoz et al. Review of High-Contrast Imaging Systems for Current and Future Ground-Based and Space-Based Telescopes: Part II. Common Path Wavefront Sensing/Control and Coherent Differential Imaging, Adaptive Optics Systems VI (Proceedings of the SPIE), Volume 10703, SPIE (2018), 107031U | DOI

[160] Pierre Baudoz; Anthony Boccaletti; Jacques Baudrand; D. Rouan The Self-Coherent Camera: A New Tool for Planet Detection, Direct Imaging of Exoplanets: Science & Techniques (Proceedings of the IAU Colloquium), Volume C200, Cambridge University Press (2006), pp. 553-558 | DOI

[161] Michael J. Wilby; Christoph U. Keller; Frans Snik; V. Korkiakoski; A. G. M. Pietrow The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments, Astronomy & Astrophysics, Volume 597 (2017), A112, p. 14 | DOI

[162] Frantz Martinache The Asymmetric Pupil Fourier Wavefront Sensor, Publications of the Astronomical Society of Pacific, Volume 125 (2013) no. 926, pp. 422-430 | DOI

[163] Amir Give’on; Brian D. Kern; Stuart B. Shaklan Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy, Techniques and Instrumentation for Detection of Exoplanets V (Proceedings of the SPIE), Volume 8151, SPIE (2011), 815110 | DOI

[164] Axel Potier; Pierre Baudoz; Raphaël Galicher; Garima Singh; Anthony Boccaletti Comparing Focal Plane Wavefront Control Techniques: Numerical Simulations and Laboratory Experiments, Astronomy & Astrophysics, Volume 635 (2020), A192 | DOI

[165] Michael Bottom; Bruno Femenia; Elsa Huby et al. Speckle Nulling Wavefront Control for Palomar and Keck, Adaptive Optics Systems V, Volume 9909, SPIE (2016), pp. 1507-1522 | DOI

[166] Frantz Martinache; Olivier Guyon; Nemanja Jovanovic et al. On-Sky Speckle Nulling Demonstration at Small Angular Separation with SCExAO, Publications of the Astronomical Society of the Pacific, Volume 126 (2014), pp. 565-572 | DOI

[167] Axel Potier; Pierre Baudoz; Raphaël Galicher; Garima Singh; Anthony Boccaletti Comparing focal plane wavefront control techniques: Numerical simulations and laboratory experiments, Astronomy & Astrophysics, Volume 635 (2020), A192, p. 12 | DOI

[168] Olivier Guyon; Kelsey L. Miller; Jared R. Males; Ruslan Belikov; Brian D. Kern Spectral Linear Dark Field Control: Stabilizing Deep Contrast for Exoplanet Imaging Using out-of-band Speckle Field (2017) (https://arxiv.org/abs/1706.07377)

[169] Kelsey L. Miller; Olivier Guyon; Jared R. Males Spatial Linear Dark Field Control: Stabilizing Deep Contrast for Exoplanet Imaging Using Bright Speckles, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 3 (2017), 049002 | DOI

[170] Thayne Currie; Eugene Pluzhnik; Olivier Guyon et al. Laboratory Demonstration of Spatial Linear Dark Field Control For Imaging Extrasolar Planets in Reflected Light, Publications of the Astronomical Society of the Pacific, Volume 132 (2020), 104502 | DOI

[171] Leonid Pogorelyuk; Jeremy N. Kasdin Dark Hole Maintenance and A Posteriori Intensity Estimation in the Presence of Speckle Drift in a High-contrast Space Coronagraph, The Astrophysical Journal, Volume 873 (2019) no. 1, 95 | DOI

[172] He Sun; Jeremy N. Kasdin Neural Network Control of the High-Contrast Imaging System, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 10698, International Society for Optics and Photonics (2018), 106981R | DOI

[173] Maxime Quesnel; Gilles Orban de Xivry; Gilles Louppe; Olivier Absil Deep Learning-Based Focal Plane Wavefront Sensing for Classical and Coronagraphic Imaging, Adaptive Optics Systems VII (Proceedings of the SPIE), Volume 11448, SPIE (2020), pp. 300-311 | DOI

[174] Leonid Pogorelyuk; Laurent A. Pueyo; Jared R. Males; Kerri Cahoy; Jeremy N. Kasdin Information-Theoretical Limits of Recursive Estimation and Closed-loop Control in High-contrast Imaging, The Astrophysical Journal Supplement Series, Volume 256 (2021), 39 | DOI

[175] Axel Potier; Raphaël Galicher; Pierre Baudoz et al. Increasing the Raw Contrast of VLT/SPHERE with the Dark Hole Technique. I. Simulations and Validation on the Internal Source, Astronomy & Astrophysics, Volume 638 (2020), A117 | DOI

[176] Axel Potier; J. Mazoyer; Z. Wahhaj et al. Increasing the raw contrast of VLT/SPHERE with the dark hole technique. II. On-sky wavefront correction and coherent differential imaging, Astronomy & Astrophysics, Volume 665 (2022), A136 | DOI

[177] Johan Mazoyer; Pierre Baudoz; Ruslan Belikov et al. High-Contrast Testbeds for Future Space-Based Direct Imaging Exoplanet Missions (2019), p. 101 (https://arxiv.org/abs/1907.09508, to be published in the Bulletin of the American Astronomical Society)

[178] Jorge Llop-Sayson; Nemanja Jovanovic; Grady Morrissey; Daniel Echeverri; Dimitri Mawet Wavefront control experiments with a single mode fiber at the High-Contrast Spectroscopy Testbed for Segmented Telescopes (HCST), Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11443, SPIE (2020), 114432Q | DOI

[179] Rémi Soummer; Iva Laginja; Scott Will et al. High-contrast imager for complex aperture telescopes (HiCAT): 7. Dark zone demonstration with fully segmented aperture coronagraph, Techniques and Instrumentation for Detection of Exoplanets X (Stuart B. Shaklan; Garreth J. Ruane, eds.), Volume 11823, SPIE (2021) | DOI

[180] A. J. Eldorado Riggs; Garreth J. Ruane; Dan Sirbu et al. Initial super-Nyquist wavefront control experiments in the Decadal Survey Testbed, Techniques and Instrumentation for Detection of Exoplanets X (Stuart B. Shaklan; Garreth J. Ruane, eds.), Volume 11823, SPIE (2021), pp. 533-542 | DOI

[181] David Marx; Ruslan Belikov; Dan Sirbu et al. Results from the laboratory demonstration of a PIAACMC coronagraph with a segmented aperture, Techniques and Instrumentation for Detection of Exoplanets X (Stuart B. Shaklan; Garreth J. Ruane, eds.), Volume 11823, SPIE (2021), pp. 222-229 | DOI

[182] Steven P. Bos; David S. Doelman; Julien Lozi et al. Focal-Plane Wavefront Sensing with the Vector-Apodizing Phase Plate, Astronomy & Astrophysics, Volume 632 (2019), A48 | DOI

[183] Kelsey L. Miller; Jared R. Males; Olivier Guyon et al. Spatial Linear Dark Field Control and Holographic Modal Wavefront Sensing with a vAPP Coronagraph on MagAO-X, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 5 (2019) no. 4, 049004, p. 2329-4124, 2329-4221 | DOI

[184] D. Mawet; Peter L. Wizinowich; R. Dekany et al. Keck Planet Imager and Characterizer: concept and phased implementation, Adaptive Optics Systems V (Enrico Marchetti; Laird M. Close; Jean-Pierre Véran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9909 (2016), 99090D | DOI

[185] Raphaël Galicher; Pierre Baudoz; Jacques-Robert Delorme et al. Minimization of non-common path aberrations at the Palomar telescope using a self-coherent camera, Astronomy & Astrophysics, Volume 631 (2019), A143 | DOI

[186] Steven P. Bos; Kelsey L. Miller; Julien Lozi et al. First on-sky demonstration of spatial Linear Dark Field Control with the vector-Apodizing Phase Plate at Subaru/SCExAO, Astronomy & Astrophysics, Volume 653 (2021), A42 | DOI

[187] Steven P. Bos; Michael Bottom; Sam Ragland et al. Fast and furious focal-plane wavefront sensing at W.M. Keck Observatory, Techniques and Instrumentation for Detection of Exoplanets X (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11823, SPIE (2021), 118231E | DOI

[188] Jean-François Sauvage; Thierry Fusco; C. Petit et al. SAXO, the eXtreme Adaptive Optics System of SPHERE: Overview and Calibration Procedure, Adaptive Optics Systems II (Proceedings of the SPIE), Volume 7736, SPIE (2010), 77360F | DOI

[189] Thayne Currie; Beth Biller; Anne-Marie Lagrange et al. Direct Imaging and Spectroscopy of Extrasolar Planets (2022) (https://arxiv.org/abs/2205.05696)

[190] Maud Langlois; R. Gratton; Anne-Marie Lagrange et al. The SPHERE infrared survey for exoplanets (SHINE). II. Observations, data reduction and analysis, detection performances, and initial results, Astronomy & Astrophysics, Volume 651 (2021), A71 | DOI

[191] Christian Marois; David Lafrenière; René Doyon; Bruce A. Macintosh; Daniel Nadeau Angular Differential Imaging: A Powerful High-Contrast Imaging Technique, The Astrophysical Journal, Volume 641 (2006) no. 1, pp. 556-564 | DOI

[192] Edward D. Rosenthal; Mark A. Gurwell; Paul T. P. Ho Efficient detection of brown dwarfs using methane-band imaging, Nature, Volume 384 (1996) no. 6606, pp. 243-244 | DOI

[193] René Racine; Gordon A. H. Walker; Daniel Nadeau; René Doyon; Christian Marois Speckle Noise and the Detection of Faint Companions, Publications of the Astronomical Society of the Pacific, Volume 111 (1999) no. 759, pp. 587-594 | DOI

[194] Christian Marois; René Racine; René Doyon; David Lafrenière; Daniel Nadeau Differential Imaging with a Multicolor Detector Assembly: A New Exoplanet Finder Concept, The Astrophysical Journal, Volume 615 (2004) no. 1, p. L61-L64 | DOI

[195] Niranjan Thatte; Roberto Abuter; Matthias Tecza et al. Very high contrast integral field spectroscopy of AB Doradus C: 9-mag contrast at 0.2arcsec without a coronagraph using spectral deconvolution†, Monthly Notices of the Royal Astronomical Society, Volume 378 (2007) no. 4, pp. 1229-1236 | DOI

[196] Jean-Luc Beuzit; David Mouillet; Anne-Marie Lagrange; J. Paufique A stellar coronograph for the COME-ON-PLUS adaptive optics system, Astronomy & Astrophysicss, Volume 125 (1997) no. 1, pp. 175-182 | DOI

[197] Élodie Choquet; Marshall D. Perrin; Christine H. Chen et al. First Images of Debris Disks around TWA 7, TWA 25, HD 35650, and HD 377, The Astrophysical Journal Letters, Volume 817 (2016) no. 1, L2, p. 6 | DOI

[198] Deqing Ren; Yili Chen Global optimization-based reference star differential imaging for high-contrast exoplanet imaging survey, Monthly Notices of the Royal Astronomical Society, Volume 502 (2021) no. 2, pp. 2158-2171 | DOI

[199] Z. Wahhaj; Julien Milli; C. Romero et al. A search for a fifth planet around HR 8799 using the star-hopping RDI technique at VLT/SPHERE, Astronomy & Astrophysics, Volume 648 (2021), A26 | DOI

[200] Naoshi Baba; Naoshi Murakami A Method to Image Extrasolar Planets with Polarized Light, Publications of the Astronomical Society of the Pacific, Volume 115 (2003) no. 814, pp. 1363-1366 | DOI

[201] Naoshi Baba; Naoshi Murakami; Youko Tate; Yoichiro Sato; Motohide Tamura Objective spectrometer for exoplanets based on nulling polarization interferometry, Techniques and Instrumentation for Detection of Exoplanets II (Daniel R. Coulter, ed.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 5905, SPIE (2005), pp. 347-351 | DOI

[202] Johanan L. Codona; Roger Angel Imaging Extrasolar Planets by Stellar Halo Suppression in Separately Corrected Color Bands, The Astrophysical Journal, Volume 604 (2004) no. 2, p. L117-L120 | DOI

[203] Michael Bottom; James K. Wallace; R. D. Bartos et al. Speckle suppression and companion detection using coherent differential imaging, Monthly Notices of the Royal Astronomical Society, Volume 464 (2017) no. 3, pp. 2937-2951 | DOI

[204] Benjamin L. Gerard; Christian Marois; Raphaël Galicher Fast Coherent Differential Imaging on Ground-based Telescopes Using the Self-coherent Camera, The Astronomical Journal, Volume 156 (2018) no. 3, 106 | DOI

[205] Steven P. Bos The polarization-encoded self-coherent camera, Astronomy & Astrophysics, Volume 646 (2021), A177 | DOI

[206] Pierre Baudoz; Johan Mazoyer; Raphaël Galicher Laboratory Tests of Planet Signal Extraction in High Contrast Images, Proceedings of the Third AO4ELT Conference (2013), 109 | DOI

[207] Christine H. Chen; Johan Mazoyer; Charles A. Poteet et al. Multiband GPI Imaging of the HR 4796A Debris Disk, The Astrophysical Journal, Volume 898 (2020) no. 1, 55 | DOI

[208] Pauline Arriaga; Michael P. Fitzgerald; Gaspard Duchêne et al. Multiband Polarimetric Imaging of HR 4796A with the Gemini Planet Imager, The Astronomical Journal, Volume 160 (2020), 79 | DOI

[209] David Lafrenière; Christian Marois; René Doyon; Daniel Nadeau; Étienne Artigau A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging, The Astrophysical Journal, Volume 660 (2007) no. 1, pp. 770-780

[210] Christian Marois; Carlos Correia; Jean-Pierre Véran; Thayne Currie TLOCI: A Fully Loaded Speckle Killing Machine, Exploring the Formation and Evolution of Planetary Systems (Mark Booth; Brenda C. Matthews; James R. Graham, eds.), Volume 299, Cambridge University Press (2014), pp. 48-49 | DOI

[211] Rémi Soummer; Laurent A. Pueyo; James E. Larkin Detection and Characterization of Exoplanets and Disks Using Projections on Karhunen-Loève Eigenimages, The Astrophysical Journall, Volume 755 (2012) no. 2, L28 | DOI

[212] Adam Amara; Sascha P. Quanz PYNPOINT: An Image Processing Package for Finding Exoplanets, Monthly Notices of the Royal Astronomical Society, Volume 427 (2012) no. 2, pp. 948-955 | DOI

[213] Raphaël Galicher; Anthony Boccaletti; D. Mesa et al. Astrometric and Photometric Accuracies in High Contrast Imaging: The SPHERE Speckle Calibration Tool (SpeCal), Astronomy & Astrophysics, Volume 615 (2018), A92 | DOI

[214] F. Cantalloube; David Mouillet; Laurent M. Mugnier et al. Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data, Astronomy & Astrophysics, Volume 582 (2015), A89, p. 19 | DOI

[215] Olivier Flasseur; Loïc Denis; Éric Thiébaut; Maud Langlois Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch covariances. The PACO algorithm, Astronomy & Astrophysics, Volume 618 (2018), A138 | DOI

[216] Olivier Flasseur; Samuel Thé; Loïc Denis; Éric Thiébaut; Maud Langlois REXPACO: An algorithm for high contrast reconstruction of the circumstellar environment by angular differential imaging, Astronomy & Astrophysics, Volume 651 (2021), A62, p. 24 | DOI

[217] Laurent A. Pueyo Detection and Characterization of Exoplanets Using Projections on Karhunen Loeve Eigenimages: Forward Modeling, The Astrophysical Journal, Volume 824 (2016), 117 | DOI

[218] Julien Milli; David Mouillet; Anne-Marie Lagrange et al. Impact of angular differential imaging on circumstellar disk images, Astronomy & Astrophysics, Volume 545 (2012), A111 | DOI

[219] Thomas M. Esposito; Michael P. Fitzgerald; James R. Graham; Paul Kalas Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk, The Astrophysical Journal, Volume 780 (2014), 25 | DOI

[220] Johan Mazoyer; Pauline Arriaga; Justin Hom et al. DiskFM: A Forward Modeling Tool for Disk Analysis with Coronagraphic Instruments, Ground-based and Airborne Instrumentation for Astronomy VIII (Proceedings of the SPIE), Volume 11447, SPIE (2020), 1144759 | DOI

[221] Anthony Boccaletti; G. Chauvin; David Mouillet et al. SPHERE+: Imaging Young Jupiters down to the Snowline (2020) (https://arxiv.org/abs/2003.05714)

[222] Jeffrey K. Chilcote; Quinn M. Konopacky; Robert J. De Rosa et al. GPI 2.0: Upgrading the Gemini Planet Imager, Ground-based and Airborne Instrumentation for Astronomy VIII (Proceedings of the SPIE), Volume 11447, SPIE, International Society for Optics and Photonics (2020), 114471S | DOI

[223] Markus Kasper; Christophe Verinaud; Dimitri Mawet Roadmap for PCS, the Planetary Camera and Spectrograph for the E-ELT, Proceedings of the Third AO4ELT Conference, Red Hook, New York (2013), 57895, p. 8 | DOI

[224] Michael P. Fitzgerald; Vanessa P. Bailey; Christoph Baranec et al. The Planetary Systems Imager for TMT, Bulletin of the American Astronomical Society, Volume 51 (2019), 251 (ADS Bibcode: 2019BAAS...51g.251F)

[225] Pierre Baudoz Future Exoplanet Research: High-Contrast Imaging Techniques, Handbook of Exoplanets (Hans J. Deeg; Juan Antonio Belmonte, eds.), Springer, 2017, pp. 3285-3300 | DOI

Cité par Sources :

Commentaires - Politique