[Imager des exoplanètes grâce aux instruments coronographiques]
L’exoplanétologie est un domaine très actif de l’astronomie moderne avec des questions encore ouvertes : comment les systèmes planétaires se forment-ils et évoluent-ils ; pourquoi une telle diversité d’exoplanètes est-elle observée (masse, rayon, paramètres orbitaux, température, composition) ; quelles sont les interactions entre les planètes, les disques circumstellaires et leur étoile hôte ? Plusieurs méthodes complémentaires sont utilisées pour la détection d’exoplanètes. Parmi celles-ci, l’imagerie permet la détection directe de la lumière réfléchie, diffusée ou émise par les exoplanètes et les disques circumstellaires. Ceci permet une caractérisation spectrale et polarimétrique. Obtenir une image d’exoplanète n’est cependant pas simple en raison du grand rapport de luminosité (104-1010) et de la faible séparation angulaire (fraction de seconde d’angle) entre l’étoile et son environnement. Depuis deux décennies, de nombreuses techniques, dont la coronographie, ont été développées pour faire de l’imagerie des exoplanètes une réalité.
Cet article donne un large aperçu des sous-systèmes d’un instrument coronographique. Il a été écrit en particulier pour les non-spécialistes ou les nouveaux venus dans le domaine. Nous décrivons le fonctionnement de la coronographie et en proposons un formalisme mathématique. Nous expliquons la formation des tavelures stellaires et l’impact des aberrations de la surface d’onde sur les performances du coronographe. Nous présentons enfin les techniques instrumentales et de traitement du signal utilisées pour améliorer les performances des coronographes en minimisant activement ou en étalonnant a posteriori ces tavelures.
Exoplanetary science is a very active field of astronomy nowadays, with questions still opened such as how planetary systems form and evolve (occurrence, process), why such a diversity of exoplanets is observed (mass, radius, orbital parameters, temperature, composition), and what are the interactions between planets, circumstellar disk and their host star. Several complementary methods are used for the detection of exoplanets. Among these, imaging aims at the direct detection of the light reflected, scattered or emitted by exoplanets and circumstellar disks. This allows their spectral and polarimetric characterization. Such imaging remains challenging because of the large luminosity ratio (104-1010) and the small angular separation (fraction of an arcsecond) between the star and its environment. Over the past two decades, numerous techniques, including coronagraphy, have been developed to make exoplanet imaging a reality.
This paper gives a broad overview of the subsystems that make up a coronagraphic instrument for imaging exoplanetary systems. It is especially intended for non-specialists or newcomers in the field. We explain the principle of coronagraphy and propose a formalism to understand their behavior. We discuss the impact of wavefront aberrations on the performance of coronagraphs and how they induce stellar speckles in the scientific image. Finally, we present instrumental and signal processing techniques used for on-sky minimization or a posteriori calibration of these speckles in order to improve the performance of coronagraphs.
Accepté le :
Première publication :
Publié le :
Mot clés : Exoplanètes, Instrumentation astronomique, Coronographie, Imagerie Haut-contraste, Haute résolution angulaire
Raphaël Galicher 1 ; Johan Mazoyer 2
@article{CRPHYS_2023__24_S2_69_0, author = {Rapha\"el Galicher and Johan Mazoyer}, title = {Imaging exoplanets with coronagraphic instruments}, journal = {Comptes Rendus. Physique}, pages = {69--113}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S2}, year = {2023}, doi = {10.5802/crphys.133}, language = {en}, }
Raphaël Galicher; Johan Mazoyer. Imaging exoplanets with coronagraphic instruments. Comptes Rendus. Physique, Volume 24 (2023) no. S2, pp. 69-113. doi : 10.5802/crphys.133. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.133/
[1] et al. The Solar System, Astronomy and Astrophysics Library, Springer Science & Business Media, 2013 | DOI
[2] et al. Discovery and Spectroscopy of the Young Jovian Planet 51 Eri b with the Gemini Planet Imager, Science, Volume 350 (2015), pp. 64-67 | DOI
[3] CGI-flux-ratio-plot, 2022 (GitHub, https://github.com/nasavbailey/DI-flux-ratio-plot)
[4] et al. NAOS-CONICA First on-Sky Results in a Variety of Observing Modes, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (Proceedings of the SPIE), Volume 4841, SPIE (2003), pp. 944-952 | DOI
[5] et al. NAOS, the First AO System of the VLT: On-Sky Performance, Adaptive Optical System Technologies II (Proceedings of the SPIE), Volume 4839, SPIE (2003), pp. 140-149 | DOI
[6] Instrumentation at the Keck observatory, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (Masanori Iye; Alan F. M. Moorwood, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 4841, SPIE (2003), pp. 1-6 | DOI
[7] Optical engineering at Keck Observatory: design and performance of the telescopes, adaptive optics and interferometer, ICO20: Optical Design and Fabrication (James Breckinridge; Yongtian Wang, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 6034 (2006), 603401 | DOI
[8] Near Infrared Coronagraphic Imager for Gemini South, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (Proceedings of the SPIE), Volume 4841 (2003), pp. 889-900 | DOI
[9] et al. The Gemini Near-Infrared Imager (NIRI), The Publications of the Astronomical Society of the Pacific, Volume 115 (2003) no. 814, pp. 1388-1406 | DOI
[10] et al. Progress on Altair: the Gemini North adaptive optics system, Adaptive Optical Systems Technology (P. L. Wizinowich, ed.) (SPIE Conference Series), Volume 4007, SPIE (2000), pp. 115-125 | DOI
[11] et al. SPHERE: The Exoplanet Imager for the Very Large Telescope, Astronomy & Astrophysics, Volume 631 (2019), A155 | DOI
[12] et al. The Gemini Planet Imager: From Science to Design to Construction, Adaptive Optics Systems (Proceedings of the SPIE), Volume 7015, SPIE (2008), p. 701518 | DOI
[13] Clio: A 3-5 Micron AO Planet-Finding Camera, Ground-based and Airborne Instrumentation for Astronomy (Proceedings of the SPIE), Volume 6269, SPIE (2006), pp. 288-297 | DOI
[14] et al. The Magellan Telescope Adaptive Secondary AO System: A Visible and Mid-IR AO Facility, Adaptive Optics Systems II (Proceedings of the SPIE), Volume 7736, SPIE (2010), pp. 58-69 | DOI
[15] et al. The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales, Publications of the Astronomical Society of the Pacific, Volume 127 (2015) no. 955, pp. 890-910 | DOI
[16] Exploration of the Environments of Nearby Stars with the NICMOS Coronagraph: Instrumental Performance Considerations, Space Telescopes and Instruments V (Proceedings of the SPIE), Volume 3356, SPIE (1998), pp. 222-233 | DOI
[17] et al. Advanced Camera for Surveys Coronagraph on the Hubble Space Telescope, High-Contrast Imaging for Exo-Planet Detection (Proceedings of the SPIE), Volume 4860, SPIE (2003), pp. 20-31 | DOI
[18] et al. Coronagraphic Imaging with the Hubble Space Telescope and the Space Telescope Imaging Spectrograph, Publications of the Astronomical Society of the Pacific, Volume 115 (2003), pp. 1036-1049 (ADS Bibcode: 2003PASP..115.1036G) | DOI
[19] et al. Science Opportunities with the Near-IR Camera (NIRCam) on the James Webb Space Telescope (JWST), Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Volume 8442, SPIE (2012), 84422N, pp. 973-983 | DOI
[20] et al. The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs, Publications of the Astronomical Society of the Pacific, Volume 127 (2015), pp. 633-645 | DOI
[21] et al. Confirmation of the Planet around HD 95086 by Direct Imaging, The Astrophysical Journal Letters, Volume 779 (2013), L26 | DOI
[22] et al. Direct Imaging of Multiple Planets Orbiting the Star HR 8799, Science, Volume 322 (2008) no. 5906, pp. 1348-1352 | DOI
[23] Images of a Fourth Planet Orbiting HR 8799, Nature, Volume 468 (2010) no. 7327, pp. 1080-1083 | DOI
[24] et al. Discovery of a Warm, Dusty Giant Planet around HIP 65426, Astronomy & Astrophysics, Volume 605 (2017), L9 | DOI
[25] et al. A Probable Giant Planet Imaged in the Pictoris Disk. VLT/NaCo Deep L’-Band Imaging, Astronomy & Astrophysics, Volume 493 (2009), p. L21-L25 | DOI
[26] et al. Images of Embedded Jovian Planet Formation at a Wide Separation around AB Aurigae, Nature Astronomy, Volume 6 (2022), p. 751–759 | DOI
[27] et al. Discovery of a Planetary-Mass Companion within the Gap of the Transition Disk around PDS 70, Astronomy & Astrophysics, Volume 617 (2018), A44 | DOI
[28] et al. WFIRST Coronagraph Flight Performance Modeling, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 10698, SPIE (2018), 106982K | DOI
[29] et al. Paving the Way to Future Missions: The Roman Space Telescope Coronagraph Technology Demonstration (2020) (https://arxiv.org/abs/2008.05624)
[30] et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report (2020) (https://arxiv.org/abs/2001.06683)
[31] The LUVOIR Mission Concept Study Final Report (2019) (https://arxiv.org/abs/1912.06219)
[32] Direct Imaging of Exoplanets: Results & Perspectives, C. R. Phys., Volume 24 (2023) no. S2, pp. 129-150 | DOI
[33] Observations of circumstellar disks in scattered light with SPHERE at the VLT, C. R. Phys., Volume 24 (2023) no. S2, pp. 151-169 | DOI
[34] Direct Imaging as a Detection Technique for Exoplanets, Handbook of Exoplanets, Springer, Cham, 2018, pp. 1-61 | DOI
[35] Detecting Nonsolar Planets by Spinning Infrared Interferometer, Nature, Volume 274 (1978) no. 5673, pp. 780-781 | DOI
[36] et al. Overview of LBTI: a multipurpose facility for high spatial resolution observations, Optical and Infrared Interferometry and Imaging V (Fabien Malbet; Michelle J. Creech-Eakman; Peter G. Tuthill, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9907, SPIE (2016), 990704 | DOI
[37] et al. The HOSTS Survey for Exozodiacal Dust: Observational Results from the Complete Survey, The Astronomical Journal, Volume 159 (2020), 177 | DOI
[38] Astrometry of directly imaged exoplanets with optical interferometry, C. R. Phys., Volume 24 (2023) no. S2, pp. 115-128 | DOI
[39] Methods of Detecting Extrasolar Planets. I. Imaging, Icarus, Volume 30 (1977) no. 2, pp. 422-433 | DOI
[40] II Apodisation, Progress in Optics, Volume 3 (1964), pp. 29-186 | DOI
[41] Stellar Coronograph with Phase Mask, Publications of the Astronomical Society of the Pacific, Volume 109 (1997) no. 737, pp. 815-820 | DOI
[42] The Four-Quadrant Phase-Mask Coronagraph. I. Principle, Publications of the Astronomical Society of the Pacific, Volume 112 (2000), pp. 1479-1486 | DOI
[43] Annular Groove Phase Mask Coronagraph, The Astrophysical Journal, Volume 633 (2005) no. 2, pp. 1191-1200
[44] Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures, The Astrophysical Journal, Volume 618 (2005) no. 2, p. L161-L164 | DOI
[45] et al. An Eight-Octant Phase-Mask Coronagraph, Publication of the Astronomical Society of Pacific, Volume 120 (2008), pp. 1112-1118 | DOI
[46] A Family of Phase Masks for Broadband Coronagraphy Example of the Wrapped Vortex Phase Mask Theory and Laboratory Demonstration, Astronomy & Astrophysics, Volume 635 (2020), A11 | DOI
[47] Stellar coronagraphy with prolate apodized circular apertures, Astronomy & Astrophysics, Volume 397 (2003), pp. 1161-1172 | DOI
[48] Hybrid Lyot Coronagraph for WFIRST-AFTA: Coronagraph Design and Performance Metrics, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 2 (2016), 011013 | DOI
[49] Étude de La Couronne Solaire En Dehors Des Éclipses, Zeitschrift fur Astrophysik, Volume 5 (1932), pp. 73-95
[50] Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs, The Astrophysical Journal, Volume 582 (2003), pp. 1147-1161 | DOI
[51] A high-contrast coronagraph for the MMT using phase apodization: design and observations at 5 microns and 2 /D radius, Ground-based and Airborne Instrumentation for Astronomy (Ian S. McLean; Masanori Iye, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 6269 (2006), 62691N | DOI
[52] Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging, Astronomy & Astrophysics, Volume 404 (2003), pp. 379-387 | DOI
[53] et al. First On-Sky High-Contrast Imaging with an Apodizing Phase Plate, The Astrophysical Journal, Volume 660 (2007) no. 1, pp. 762-769 | DOI
[54] The vector-APP: a broadband apodizing phase plate that yields complementary PSFs, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II (Ramón Navarro; Colin R. Cunningham; Eric Prieto, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8450 (2012), 84500M | DOI
[55] et al. Vector-Apodizing Phase Plate Coronagraph: Design, Current Performance, and Future Development [Invited], Applied Optics, Volume 60 (2021), p. D52-D72 (ADS Bibcode: 2021ApOpt..60D..52D) | DOI
[56] Introduction to Fourier Optics, McGraw-Hill physical and quantum electronics series, Roberts and Company Publishers, 2005
[57] Closed Loop, DM Diversity-Based, Wavefront Correction Algorithm for High Contrast Imaging Systems, Optics Express, Volume 15 (2007) no. 19, pp. 12338-12343 | DOI
[58] Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs, Astrophysical Journal, Supplement, Volume 167 (2006) no. 1, pp. 81-99 | DOI
[59] et al. High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator, Adaptive Optics Systems VI (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10703, SPIE (2018), 1070342 | DOI
[60] Wide-band six-region phase mask coronagraph, Optics Express, Volume 22 (2014) no. 2, pp. 1884-1895 | DOI
[61] A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets, The Astrophysical Journal, Volume 570 (2002), pp. 900-908 | DOI
[62] Lyot Coronagraphy on Giant Segmented-Mirror Telescopes, The Astrophysical Journal, Volume 626 (2005) no. 1, p. L65-L68 | DOI
[63] et al. Ring-Apodized Vortex Coronagraphs for Obscured Telescopes. I. Transmissive Ring Apodizers, The Astrophysical Journal Supplement Series, Volume 209 (2013), 7 | DOI
[64] A Binary Shaped Mask Coronagraph for a Segmented Pupil, Publications of the Astronomical Society of Japan, Volume 62 (2010), pp. 1407-1411 | DOI
[65] Apodized Phase Mask Coronagraphs for Arbitrary Apertures, Astronomy & Astrophysics, Volume 551 (2013), A10 | DOI
[66] High Performance Lyot and PIAA Coronagraphy for Arbitrarily Shaped Telescope Apertures, The Astrophysical Journal, Volume 780 (2014), 171 | DOI
[67] et al. Experimental demonstration of binary shaped pupil mask coronagraphs for telescopes with obscured pupils, Publications of the Astronomical Society of Japan, Volume 67 (2015) no. 2, 28 | DOI
[68] et al. Lyot-Plane Phase Masks for Improved High-Contrast Imaging with a Vortex Coronagraph, Astronomy & Astrophysics, Volume 583 (2015), A81 | DOI
[69] et al. Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 2 (2016), 011012 | DOI
[70] et al. Apodized Pupil Lyot coronagraphs with arbitrary aperture telescopes: novel designs using hybrid focal plane masks, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Makenzie Lystrup; Howard A. MacEwen; Giovanni G. Fazio; Natalie Batalha; Nicholas Siegler; Edward C. Tong, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10698 (2018), 106986A | DOI
[71] High-Contrast Imaging with an Arbitrary Aperture: Active Compensation of Aperture Discontinuities, The Astrophysical Journal, Volume 769 (2013), 102 | DOI
[72] Phase-apodized-pupil Lyot Coronagraphs for Arbitrary Telescope Pupils, The Astrophysical Journal, Volume 888 (2020) no. 2, 127 | DOI
[73] Polynomial Apodizers for Centrally Obscured Vortex Coronagraphs, The Astronomical Journal, Volume 154 (2017), 240 | DOI
[74] et al. Review of Small-Angle Coronagraphic Techniques in the Wake of Ground-Based Second-Generation Adaptive Optics Systems, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 8442, SPIE (2012), p. 844204 | DOI
[75] et al. Review of High-Contrast Imaging Systems for Current and Future Ground- and Space-Based Telescopes I: Coronagraph Design Methods and Optical Performance Metrics, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 10698 (2018), 106982S | DOI
[76] et al. Prototyping Coronagraphs for Exoplanet Characterization with SPHERE, Proceedings of the SPIE, Volume 7015 (2008), 70151B | DOI
[77] et al. Gemini Planet Imager Coronagraph Testbed Results, Ground-based and Airborne Instrumentation for Astronomy III (Proceedings of the SPIE), Volume 7735, SPIE (2010), pp. 2922-2933 | DOI
[78] High-Contrast Imaging with Gaussian Aperture Pupil Masks, Publications of the Astronomical Society of the Pacific, Volume 116 (2004) no. 821, pp. 674-681 | DOI
[79] contrast ratio at 4.5/D: New results obtained in laboratory experiments using nano-fabricated coronagraph and multi-Gaussian shaped pupil masks, Optics Express, Volume 13 (2005) no. 7, pp. 2394-2402 | DOI
[80] et al. Design, analysis, and testing of a microdot apodizer for the Apodized Pupil Lyot Coronagraph, Astronomy & Astrophysics, Volume 495 (2009) no. 1, pp. 363-370 | DOI
[81] et al. Experimental test of a micro-mirror array as an adaptive apodizer for high-contrast imaging, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III (Ramón Navarro; Roland Geyl, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10706, SPIE (2018), 107062M | DOI
[82] A coronagraph using a digital micromirror device as an adaptive occultation mask: design and observational result, Ground-based and Airborne Instrumentation for Astronomy VIII (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11447 (2020), 114479Y | DOI
[83] Development and characterization of Four-Quadrant Phase Mask coronagraph (FQPM), Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II (Ramón Navarro; James H. Burge, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9912, SPIE (2016), 99126J | DOI
[84] Scalar vortex coronagraph mask design and predicted performance, Techniques and Instrumentation for Detection of Exoplanets IX (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11117 (2019), 111171F | DOI
[85] et al. Taking the vector vortex coronagraph to the next level for ground- and space-based exoplanet imaging instruments: review of technology developments in the USA, Japan, and Europe, Techniques and Instrumentation for Detection of Exoplanets V (Stuart B. Shaklan, ed.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8151 (2011), 815108 | DOI
[86] et al. Design and laboratory demonstration of an achromatic vector vortex coronagraph, Optics Express, Volume 21 (2013) no. 6, pp. 7400-7410 | DOI
[87] Minimizing the Polarization Leakage of Geometric-phase Coronagraphs with Multiple Grating Pattern Combinations, Publications of the Astronomical Society of the Pacific, Volume 132 (2020) no. 1010, 045002 | DOI
[88] Polychromatic vectorial vortex formed by geometric phase elements, Optics Letters, Volume 32 (2007) no. 7, pp. 847-849 | DOI
[89] et al. Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings, Applied Optics, Volume 51 (2012) no. 24, pp. 5897-5902 | DOI
[90] et al. Prototyping coronagraphs for exoplanet characterization with SPHERE, Adaptive Optics Systems (Norbert Hubin; Claire E. Max; Peter L. Wizinowich, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 7015, SPIE (2008), 70151B | DOI
[91] Diffraction-based Sensitivity Analysis of Apodized Pupil-mapping Systems, The Astrophysical Journal, Volume 652 (2006) no. 1, pp. 833-844 | DOI
[92] Coronagraphic Phase Diversity: Performance Study and Laboratory Demonstration, Astronomy & Astrophysics, Volume 552 (2013), A48 | DOI
[93] et al. Experimental Validation of Joint Phase and Amplitude Wave-Front Sensing with Coronagraphic Phase Diversity for High-Contrast Imaging, Astronomy & Astrophysics, Volume 614 (2018), A142 | DOI
[94] et al. Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. I. A New Adaptive Interaction Matrix Algorithm, The Astronomical Journal, Volume 155 (2018), 7 | DOI
[95] Towards High Throughput and Low-Order Aberration Robustness for Vortex Coronagraphs with Central Obstructions, Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 11443, SPIE (2020), 114433Y | DOI
[96] et al. Temporal Evolution of Coronagraphic Dynamic Range and Constraints on Companions to Vega, The Astrophysical Journal, Volume 654 (2007), pp. 633-640 | DOI
[97] et al. Speckle Temporal Stability in XAO Coronagraphic Images. II. Refine Model for Quasi-Static Speckle Temporal Evolution for VLT/SPHERE, Astronomy & Astrophysics, Volume 554 (2013), A41 | DOI
[98] The Mysterious Lives of Speckles. I. Residual Atmospheric Speckle Lifetimes in Ground-based Coronagraphs, Publication of the Astronomical Society of Pacific, Volume 133 (2021) no. 1028, 104504, p. 18 | DOI
[99] et al. Calibration of Quasi-Static Aberrations in Exoplanet Direct-Imaging Instruments with a Zernike Phase-Mask Sensor. IV. Temporal Stability of Non-Common Path Aberrations in VLT/SPHERE, Astronomy & Astrophysics, Volume 660 (2022), A140 | DOI
[100] Temporal Optical Behavior of HST: Focus, Coma, and Astigmatism History, Observatory Operations: Strategies, Processes, and Systems (Proceedings of the SPIE), Volume 6270, SPIE (2006), pp. 527-538 | DOI
[101] Numerical Modeling of the Proposed WFIRST-AFTA Coronagraphs and Their Predicted Performances, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 2 (2016) no. 1, 011003 | DOI
[102] A Circumstellar Disk around Pictoris, Science, Volume 226 (1984), pp. 1421-1424 | DOI
[103] Adaptive Optics in Astronomy, Cambridge University Press, 1999
[104] Extreme Adaptive Optics, Annual Review of Astronomy & Astrophysics, Volume 56 (2018), pp. 315-355 | DOI
[105] Optique adaptative : correction des effets de la turbulence atmosphérique sur les images astronomiques, C. R. Phys., Volume 23 (2022) no. S1, pp. 293-344 | DOI
[106] The Structure of High Strehl Ratio Point-Spread Functions, The Astrophysical Journal, Volume 596 (2003) no. 1, pp. 702-712
[107] Analytical Expression of Long-Exposure Adaptive-Optics-Corrected Coronagraphic Image First Application to Exoplanet Detection, Journal of the Optical Society of America A, Volume 27 (2010) no. 11, p. A157-A170 | DOI
[108] An Analytic Expression for Coronagraphic Imaging through Turbulence. Application to on-Sky Coronagraphic Phase Diversity, Monthly Notices of the Royal Astronomical Society, Volume 467 (2017), p. L105-L109 | DOI
[109] et al. Active minimization of non-common path aberrations in long-exposure imaging of exoplanetary systems, Astronomy & Astrophysics, Volume 631 (2019), A106 | DOI
[110] et al. Validating advanced wavefront control techniques on the SCExAO testbed/instrument, Adaptive Optics Systems VII (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11448, SPIE (2020), 114481Z | DOI
[111] Peering through SPHERE Images: A Glance at Contrast Limitations, The Messenger, Volume 176 (2019), pp. 25-31 | DOI
[112] Limits of Adaptive Optics for High-Contrast Imaging, The Astrophysical Journal, Volume 629 (2005), pp. 592-614 | DOI
[113] et al. Design of the Extreme AO System for SPHERE, the Planet Finder Instrument of the VLT, Advances in Adaptive Optics II (Proceedings of the SPIE), Volume 6272, SPIE (2006), 62720K | DOI
[114] Adaptive Optics Predictive Control with Empirical Orthogonal Functions (EOFs) (2017) (https://arxiv.org/abs/1707.00570)
[115] et al. Dynamic Testbed Demonstration of WFIRST Coronagraph Low Order Wavefront Sensing and Control (LOWFS/C), Techniques and Instrumentation for Detection of Exoplanets VIII, Volume 10400, SPIE (2017), pp. 74-90 | DOI
[116] Tip-Tilt Estimation and Correction Using FQPM Coronagraphic Images, Astronomy & Astrophysics, Volume 539 (2012), A126 | DOI
[117] Post-Coronagraphic Tip-Tilt Sensing for Vortex Phase Masks: The QACITS Technique, Astronomy & Astrophysics, Volume 584 (2015), A74 | DOI
[118] et al. Lyot-Based Low Order Wavefront Sensor for Phase-mask Coronagraphs: Principle, Simulations and Laboratory Experiments, Publications of the Astronomical Society of the Pacific, Volume 126 (2014), pp. 586-594 | DOI
[119] Diffraction Theory of the Knife-Edge Test and Its Improved Form, the Phase-Contrast Method, Monthly Notices of the Royal Astronomical Society, Volume 94 (1934), pp. 377-384 | DOI
[120] A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System, Adaptive Optics Systems III (Proceedings of the SPIE), Volume 8447 (2012), 84472K | DOI
[121] Calibration of Quasi-Static Aberrations in Exoplanet Direct-Imaging Instruments with a Zernike Phase-Mask Sensor, Astronomy & Astrophysics, Volume 555 (2013), A94 | DOI
[122] et al. Calibration of Quasi-Static Aberrations in Exoplanet Direct-Imaging Instruments with a Zernike Phase-Mask Sensor. III. On-sky Validation in VLT/SPHERE, Astronomy & Astrophysics, Volume 629 (2019), A11 | DOI
[123] et al. Pair-Based Analytical Model for Segmented Telescopes Imaging from Space for Sensitivity Analysis, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 4 (2018) no. 3, 035002 | DOI
[124] et al. Analytical Tolerancing of Segmented Telescope Co-Phasing for Exo-Earth High-Contrast Imaging, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 7 (2021), 015004 | DOI
[125] et al. Fundamental Limitations of High Contrast Imaging Set by Small Sample Statistics, The Astrophysical Journal, Volume 792 (2014) no. 2, 97, p. 11 | DOI
[126] et al. Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. II. Optimization for Future Missions, The Astronomical Journal, Volume 155 (2018), 8 | DOI
[127] Apodized Vortex Coronagraph Designs for Segmented Aperture Telescopes, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II (Proceedings of the SPIE), Volume 9912 (2016), 99122L | DOI
[128] et al. Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. V. Hybrid Shaped Pupil Designs for Imaging Earth-like Planets with Future Space Observatories, The Astrophysical Journal, Volume 818 (2016), 163 | DOI
[129] et al. ExoEarth Yield Landscape for Future Direct Imaging Space Telescopes, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 5 (2019) no. 2, 024009 | DOI
[130] The Four-Quadrant Phase-Mask Coronagraph. II. Simulations, Publications of the Astronomical Society of the Pacific, Volume 113 (2001), pp. 1145-1154 | DOI
[131] Achromatic dual-zone phase mask stellar coronagraph, Astronomy & Astrophysics, Volume 403 (2003), pp. 369-381 | DOI
[132] Multi-Stage Four-Quadrant Phase Mask: Achromatic Coronagraph for Space-Based and Ground-Based Telescopes, Astronomy & Astrophysics, Volume 530 (2011), A43 | DOI
[133] et al. Improved Achromatization of Phase Mask Coronagraphs Using Colored Apodization, Astronomy & Astrophysics, Volume 538 (2012), A55 | DOI
[134] et al. Focal Plane Wavefront Sensor Achromatization: The Multireference Self-Coherent Camera, Astronomy & Astrophysics, Volume 588 (2016), A136 | DOI
[135] et al. Laboratory Validation of the Dual-Zone Phase Mask Coronagraph in Broadband Light at the High-Contrast Imaging THD Testbed, Astronomy & Astrophysics, Volume 592 (2016), A119 | DOI
[136] et al. Shaped pupil coronagraphy for WFIRST: high-contrast broadband testbed demonstration, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Volume 10400 (2017), 104000E | DOI
[137] et al. The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures, Techniques and Instrumentation for Detection of Exoplanets VI (Stuart Shaklan, ed.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8864 (2013), 886411 | DOI
[138] High-Dynamic-Range Imaging Using a Deformable Mirror for Space Coronography, Publications of the Astronomical Society of the Pacific, Volume 107 (1995), pp. 386-398 | DOI
[139] High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime, The Astrophysical Journal, Volume 638 (2006) no. 1, pp. 488-498 | DOI
[140] Implementing Focal-Plane Phase Masks Optimized for Real Telescope Apertures with SLM-based Digital Adaptive Coronagraphy, Optics Express, Volume 25 (2017) no. 14, pp. 16686-16700 | DOI
[141] SLM-based Active Focal-Plane Coronagraphy: Status and Future on-Sky Prospects, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation IV (Proceedings of the SPIE), Volume 11451, SPIE (2021), pp. 378-386 | DOI
[142] Overview of Deformable Mirror Technologies for Adaptive Optics and Astronomy, Adaptive Optics Systems III (Proceedings of the SPIE), Volume 8447, SPIE (2012), 844705 | DOI
[143] Optimal Modal Fourier-transform Wavefront Control, Journal of the Optical Society of America A, Volume 22 (2005), pp. 1515-1526 | DOI
[144] Estimation and Correction of Wavefront Aberrations Using the Self-Coherent Camera: Laboratory Results, Astronomy & Astrophysics, Volume 557 (2013), A9 | DOI
[145] Analysis of wavefront propagation using the Talbot effect, Applied Optics, Volume 49 (2010) no. 28, pp. 5351-5359 | DOI
[146] Reflectivity and Optical Surface Height Requirements in a Broadband Coronagraph. 1.Contrast Floor Due to Controllable Spatial Frequencies, Applied Optics, Volume 45 (2006), pp. 5143-5153 | DOI
[147] Polychromatic Compensation of Propagated Aberrations for High-Contrast Imaging, The Astrophysical Journal, Volume 666 (2007) no. 1, pp. 609-625 | DOI
[148] et al. High-Contrast Imaging at Small Separations: Impact of the Optical Configuration of Two Deformable Mirrors on Dark Holes, Monthly Notices of the Royal Astronomical Society, Volume 469 (2017), pp. 218-230 | DOI
[149] et al. High Contrast at Small Separation - II. Impact on the Dark Hole of a Realistic Optical Set-up with Two Deformable Mirrors, Monthly Notices of the Royal Astronomical Society, Volume 498 (2020), pp. 3914-3926 | DOI
[150] Fundamental Limits to High-Contrast Wavefront Control, Techniques and Instrumentation for Detection of Exoplanets VIII (Proceedings of the SPIE), Volume 10400, SPIE (2017), 1040014 | DOI
[151] Methods and Limitations of Focal Plane Sensing, Estimation, and Control in High-Contrast Imaging, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 2 (2016), 011009 | DOI
[152] Comparaison des techniques d’analyse de surface d’onde en plan focal dédiées aux missions spatiales d’imagerie directe et de spectroscopie des planètes extrasolaires, Ph. D. Thesis, Université Paris sciences et lettres, Paris, France (2020) (HAL_ID=tel-03065844, https://tel.archives-ouvertes.fr/tel-03065844)
[153] Broadband wavefront correction algorithm for high-contrast imaging systems, Astronomical Adaptive Optics Systems and Applications III (Robert K. Tyson; Michael Lloyd-Hart, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 6691, SPIE (2007), 66910A | DOI
[154] et al. Optimal Dark Hole Generation via Two Deformable Mirrors with Stroke Minimization, Applied Optics, Volume 48 (2009), pp. 6296-6312 | DOI
[155] Self-Coherent Camera as a Focal Plane Wavefront Sensor: Simulations, Astronomy & Astrophysics, Volume 509 (2010), A31 | DOI
[156] Adaptive Optics: Interaction Matrix Measurements and Real Time Control Algorithms for the COME-ON Project, Adaptive Optics and Optical Structures (Proceedings of the SPIE), Volume 1271, SPIE (1990), pp. 63-81 | DOI
[157] et al. Towards the Experimental Validation of the Non-Linear Dark Hole on the THD Bench, Adaptive Optics Systems VI (Proceedings of the SPIE), Volume 10703, SPIE (2018), 1070329 | DOI
[158] Phase retrieval algorithms: a comparison, Applied Optics, Volume 21 (1982) no. 15, pp. 2758-2769 | DOI
[159] et al. Review of High-Contrast Imaging Systems for Current and Future Ground-Based and Space-Based Telescopes: Part II. Common Path Wavefront Sensing/Control and Coherent Differential Imaging, Adaptive Optics Systems VI (Proceedings of the SPIE), Volume 10703, SPIE (2018), 107031U | DOI
[160] The Self-Coherent Camera: A New Tool for Planet Detection, Direct Imaging of Exoplanets: Science & Techniques (Proceedings of the IAU Colloquium), Volume C200, Cambridge University Press (2006), pp. 553-558 | DOI
[161] The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments, Astronomy & Astrophysics, Volume 597 (2017), A112, p. 14 | DOI
[162] The Asymmetric Pupil Fourier Wavefront Sensor, Publications of the Astronomical Society of Pacific, Volume 125 (2013) no. 926, pp. 422-430 | DOI
[163] Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy, Techniques and Instrumentation for Detection of Exoplanets V (Proceedings of the SPIE), Volume 8151, SPIE (2011), 815110 | DOI
[164] Comparing Focal Plane Wavefront Control Techniques: Numerical Simulations and Laboratory Experiments, Astronomy & Astrophysics, Volume 635 (2020), A192 | DOI
[165] et al. Speckle Nulling Wavefront Control for Palomar and Keck, Adaptive Optics Systems V, Volume 9909, SPIE (2016), pp. 1507-1522 | DOI
[166] et al. On-Sky Speckle Nulling Demonstration at Small Angular Separation with SCExAO, Publications of the Astronomical Society of the Pacific, Volume 126 (2014), pp. 565-572 | DOI
[167] Comparing focal plane wavefront control techniques: Numerical simulations and laboratory experiments, Astronomy & Astrophysics, Volume 635 (2020), A192, p. 12 | DOI
[168] Spectral Linear Dark Field Control: Stabilizing Deep Contrast for Exoplanet Imaging Using out-of-band Speckle Field (2017) (https://arxiv.org/abs/1706.07377)
[169] Spatial Linear Dark Field Control: Stabilizing Deep Contrast for Exoplanet Imaging Using Bright Speckles, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 3 (2017), 049002 | DOI
[170] et al. Laboratory Demonstration of Spatial Linear Dark Field Control For Imaging Extrasolar Planets in Reflected Light, Publications of the Astronomical Society of the Pacific, Volume 132 (2020), 104502 | DOI
[171] Dark Hole Maintenance and A Posteriori Intensity Estimation in the Presence of Speckle Drift in a High-contrast Space Coronagraph, The Astrophysical Journal, Volume 873 (2019) no. 1, 95 | DOI
[172] Neural Network Control of the High-Contrast Imaging System, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave (Proceedings of the SPIE), Volume 10698, International Society for Optics and Photonics (2018), 106981R | DOI
[173] Deep Learning-Based Focal Plane Wavefront Sensing for Classical and Coronagraphic Imaging, Adaptive Optics Systems VII (Proceedings of the SPIE), Volume 11448, SPIE (2020), pp. 300-311 | DOI
[174] Information-Theoretical Limits of Recursive Estimation and Closed-loop Control in High-contrast Imaging, The Astrophysical Journal Supplement Series, Volume 256 (2021), 39 | DOI
[175] et al. Increasing the Raw Contrast of VLT/SPHERE with the Dark Hole Technique. I. Simulations and Validation on the Internal Source, Astronomy & Astrophysics, Volume 638 (2020), A117 | DOI
[176] et al. Increasing the raw contrast of VLT/SPHERE with the dark hole technique. II. On-sky wavefront correction and coherent differential imaging, Astronomy & Astrophysics, Volume 665 (2022), A136 | DOI
[177] et al. High-Contrast Testbeds for Future Space-Based Direct Imaging Exoplanet Missions (2019), p. 101 (https://arxiv.org/abs/1907.09508, to be published in the Bulletin of the American Astronomical Society)
[178] Wavefront control experiments with a single mode fiber at the High-Contrast Spectroscopy Testbed for Segmented Telescopes (HCST), Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11443, SPIE (2020), 114432Q | DOI
[179] et al. High-contrast imager for complex aperture telescopes (HiCAT): 7. Dark zone demonstration with fully segmented aperture coronagraph, Techniques and Instrumentation for Detection of Exoplanets X (Stuart B. Shaklan; Garreth J. Ruane, eds.), Volume 11823, SPIE (2021) | DOI
[180] et al. Initial super-Nyquist wavefront control experiments in the Decadal Survey Testbed, Techniques and Instrumentation for Detection of Exoplanets X (Stuart B. Shaklan; Garreth J. Ruane, eds.), Volume 11823, SPIE (2021), pp. 533-542 | DOI
[181] et al. Results from the laboratory demonstration of a PIAACMC coronagraph with a segmented aperture, Techniques and Instrumentation for Detection of Exoplanets X (Stuart B. Shaklan; Garreth J. Ruane, eds.), Volume 11823, SPIE (2021), pp. 222-229 | DOI
[182] et al. Focal-Plane Wavefront Sensing with the Vector-Apodizing Phase Plate, Astronomy & Astrophysics, Volume 632 (2019), A48 | DOI
[183] et al. Spatial Linear Dark Field Control and Holographic Modal Wavefront Sensing with a vAPP Coronagraph on MagAO-X, Journal of Astronomical Telescopes, Instruments, and Systems, Volume 5 (2019) no. 4, 049004, p. 2329-4124, 2329-4221 | DOI
[184] et al. Keck Planet Imager and Characterizer: concept and phased implementation, Adaptive Optics Systems V (Enrico Marchetti; Laird M. Close; Jean-Pierre Véran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9909 (2016), 99090D | DOI
[185] et al. Minimization of non-common path aberrations at the Palomar telescope using a self-coherent camera, Astronomy & Astrophysics, Volume 631 (2019), A143 | DOI
[186] et al. First on-sky demonstration of spatial Linear Dark Field Control with the vector-Apodizing Phase Plate at Subaru/SCExAO, Astronomy & Astrophysics, Volume 653 (2021), A42 | DOI
[187] et al. Fast and furious focal-plane wavefront sensing at W.M. Keck Observatory, Techniques and Instrumentation for Detection of Exoplanets X (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11823, SPIE (2021), 118231E | DOI
[188] et al. SAXO, the eXtreme Adaptive Optics System of SPHERE: Overview and Calibration Procedure, Adaptive Optics Systems II (Proceedings of the SPIE), Volume 7736, SPIE (2010), 77360F | DOI
[189] et al. Direct Imaging and Spectroscopy of Extrasolar Planets (2022) (https://arxiv.org/abs/2205.05696)
[190] et al. The SPHERE infrared survey for exoplanets (SHINE). II. Observations, data reduction and analysis, detection performances, and initial results, Astronomy & Astrophysics, Volume 651 (2021), A71 | DOI
[191] Angular Differential Imaging: A Powerful High-Contrast Imaging Technique, The Astrophysical Journal, Volume 641 (2006) no. 1, pp. 556-564 | DOI
[192] Efficient detection of brown dwarfs using methane-band imaging, Nature, Volume 384 (1996) no. 6606, pp. 243-244 | DOI
[193] Speckle Noise and the Detection of Faint Companions, Publications of the Astronomical Society of the Pacific, Volume 111 (1999) no. 759, pp. 587-594 | DOI
[194] Differential Imaging with a Multicolor Detector Assembly: A New Exoplanet Finder Concept, The Astrophysical Journal, Volume 615 (2004) no. 1, p. L61-L64 | DOI
[195] et al. Very high contrast integral field spectroscopy of AB Doradus C: 9-mag contrast at 0.2arcsec without a coronagraph using spectral deconvolution†, Monthly Notices of the Royal Astronomical Society, Volume 378 (2007) no. 4, pp. 1229-1236 | DOI
[196] A stellar coronograph for the COME-ON-PLUS adaptive optics system, Astronomy & Astrophysicss, Volume 125 (1997) no. 1, pp. 175-182 | DOI
[197] et al. First Images of Debris Disks around TWA 7, TWA 25, HD 35650, and HD 377, The Astrophysical Journal Letters, Volume 817 (2016) no. 1, L2, p. 6 | DOI
[198] Global optimization-based reference star differential imaging for high-contrast exoplanet imaging survey, Monthly Notices of the Royal Astronomical Society, Volume 502 (2021) no. 2, pp. 2158-2171 | DOI
[199] et al. A search for a fifth planet around HR 8799 using the star-hopping RDI technique at VLT/SPHERE, Astronomy & Astrophysics, Volume 648 (2021), A26 | DOI
[200] A Method to Image Extrasolar Planets with Polarized Light, Publications of the Astronomical Society of the Pacific, Volume 115 (2003) no. 814, pp. 1363-1366 | DOI
[201] Objective spectrometer for exoplanets based on nulling polarization interferometry, Techniques and Instrumentation for Detection of Exoplanets II (Daniel R. Coulter, ed.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 5905, SPIE (2005), pp. 347-351 | DOI
[202] Imaging Extrasolar Planets by Stellar Halo Suppression in Separately Corrected Color Bands, The Astrophysical Journal, Volume 604 (2004) no. 2, p. L117-L120 | DOI
[203] et al. Speckle suppression and companion detection using coherent differential imaging, Monthly Notices of the Royal Astronomical Society, Volume 464 (2017) no. 3, pp. 2937-2951 | DOI
[204] Fast Coherent Differential Imaging on Ground-based Telescopes Using the Self-coherent Camera, The Astronomical Journal, Volume 156 (2018) no. 3, 106 | DOI
[205] The polarization-encoded self-coherent camera, Astronomy & Astrophysics, Volume 646 (2021), A177 | DOI
[206] Laboratory Tests of Planet Signal Extraction in High Contrast Images, Proceedings of the Third AO4ELT Conference (2013), 109 | DOI
[207] et al. Multiband GPI Imaging of the HR 4796A Debris Disk, The Astrophysical Journal, Volume 898 (2020) no. 1, 55 | DOI
[208] et al. Multiband Polarimetric Imaging of HR 4796A with the Gemini Planet Imager, The Astronomical Journal, Volume 160 (2020), 79 | DOI
[209] A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging, The Astrophysical Journal, Volume 660 (2007) no. 1, pp. 770-780
[210] TLOCI: A Fully Loaded Speckle Killing Machine, Exploring the Formation and Evolution of Planetary Systems (Mark Booth; Brenda C. Matthews; James R. Graham, eds.), Volume 299, Cambridge University Press (2014), pp. 48-49 | DOI
[211] Detection and Characterization of Exoplanets and Disks Using Projections on Karhunen-Loève Eigenimages, The Astrophysical Journall, Volume 755 (2012) no. 2, L28 | DOI
[212] PYNPOINT: An Image Processing Package for Finding Exoplanets, Monthly Notices of the Royal Astronomical Society, Volume 427 (2012) no. 2, pp. 948-955 | DOI
[213] et al. Astrometric and Photometric Accuracies in High Contrast Imaging: The SPHERE Speckle Calibration Tool (SpeCal), Astronomy & Astrophysics, Volume 615 (2018), A92 | DOI
[214] et al. Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data, Astronomy & Astrophysics, Volume 582 (2015), A89, p. 19 | DOI
[215] Exoplanet detection in angular differential imaging by statistical learning of the nonstationary patch covariances. The PACO algorithm, Astronomy & Astrophysics, Volume 618 (2018), A138 | DOI
[216] REXPACO: An algorithm for high contrast reconstruction of the circumstellar environment by angular differential imaging, Astronomy & Astrophysics, Volume 651 (2021), A62, p. 24 | DOI
[217] Detection and Characterization of Exoplanets Using Projections on Karhunen Loeve Eigenimages: Forward Modeling, The Astrophysical Journal, Volume 824 (2016), 117 | DOI
[218] et al. Impact of angular differential imaging on circumstellar disk images, Astronomy & Astrophysics, Volume 545 (2012), A111 | DOI
[219] Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk, The Astrophysical Journal, Volume 780 (2014), 25 | DOI
[220] et al. DiskFM: A Forward Modeling Tool for Disk Analysis with Coronagraphic Instruments, Ground-based and Airborne Instrumentation for Astronomy VIII (Proceedings of the SPIE), Volume 11447, SPIE (2020), 1144759 | DOI
[221] et al. SPHERE+: Imaging Young Jupiters down to the Snowline (2020) (https://arxiv.org/abs/2003.05714)
[222] et al. GPI 2.0: Upgrading the Gemini Planet Imager, Ground-based and Airborne Instrumentation for Astronomy VIII (Proceedings of the SPIE), Volume 11447, SPIE, International Society for Optics and Photonics (2020), 114471S | DOI
[223] Roadmap for PCS, the Planetary Camera and Spectrograph for the E-ELT, Proceedings of the Third AO4ELT Conference, Red Hook, New York (2013), 57895, p. 8 | DOI
[224] et al. The Planetary Systems Imager for TMT, Bulletin of the American Astronomical Society, Volume 51 (2019), 251 (ADS Bibcode: 2019BAAS...51g.251F)
[225] Future Exoplanet Research: High-Contrast Imaging Techniques, Handbook of Exoplanets (Hans J. Deeg; Juan Antonio Belmonte, eds.), Springer, 2017, pp. 3285-3300 | DOI
Cité par Sources :
Commentaires - Politique