[Cumulants et grandes déviations du courant dans des états stationnaires hors équilibre]
En généralisant la relation de bilan détaillé à des systèmes maintenus hors équilibre par contact avec deux réservoirs à des températures ou à des densités différentes, nous retrouvons le théorème de fluctuations pour la fonction de grandes déviations du courant. Pour de grands systèmes diffusifs, nous montrons comment la fonction de grandes déviations du courant peut être calculée simplement à l'aide d'un principe d'additivité. La validité de ce principe d'additivité et l'existence de transitions de phase sont discutées dans le cadre d'une théorie des fluctuations à l'échelle macroscopique.
Using a generalisation of detailed balance for systems maintained out of equilibrium by contact with 2 reservoirs at unequal temperatures or at unequal densities, one can recover the fluctuation theorem for the large deviation function of the current. For large diffusive systems, we show how the large deviation function of the current can be computed using a simple additivity principle. The validity of this additivity principle and the occurrence of phase transitions are discussed in the framework of the macroscopic fluctuation theory.
Publié le :
Mot clés : Systèmes hors équilibre, Fluctuations du courant, Bilan détaillé généralisé
Thierry Bodineau 1 ; Bernard Derrida 2
@article{CRPHYS_2007__8_5-6_540_0, author = {Thierry Bodineau and Bernard Derrida}, title = {Cumulants and large deviations of the current through non-equilibrium steady states}, journal = {Comptes Rendus. Physique}, pages = {540--555}, publisher = {Elsevier}, volume = {8}, number = {5-6}, year = {2007}, doi = {10.1016/j.crhy.2007.04.014}, language = {en}, }
TY - JOUR AU - Thierry Bodineau AU - Bernard Derrida TI - Cumulants and large deviations of the current through non-equilibrium steady states JO - Comptes Rendus. Physique PY - 2007 SP - 540 EP - 555 VL - 8 IS - 5-6 PB - Elsevier DO - 10.1016/j.crhy.2007.04.014 LA - en ID - CRPHYS_2007__8_5-6_540_0 ER -
Thierry Bodineau; Bernard Derrida. Cumulants and large deviations of the current through non-equilibrium steady states. Comptes Rendus. Physique, Volume 8 (2007) no. 5-6, pp. 540-555. doi : 10.1016/j.crhy.2007.04.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.04.014/
[1] Thermal conduction in classical low-dimensional lattices, Phys. Rep., Volume 377 (2003), pp. 1-80
[2] Conversations on nonequilibrium physics with an extraterrestrial, Phys. Today, Volume 57 (2004) no. 5, pp. 48-53
[3] Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. Stat. Phys., Volume 95 (1999), pp. 393-468
[4] A remark on the hydrodynamics of the Zero-Range Processes, J. Stat. Phys., Volume 36 (1984), pp. 81-87
[5] Non-equilibrium steady states of stochastic lattice gas models of fast ionic conductors, J. Stat. Phys., Volume 34 (1984), pp. 497-537
[6] Exact solution of a 1d asymmetric exclusion model using a matrix formulation, J. Phys. A, Volume 26 (1993), pp. 1493-1517
[7] Phase transitions in an exactly soluble one-dimensional asymmetric exclusion model, J. Stat. Phys., Volume 72 (1993), pp. 277-296
[8] Large Deviations Techniques and Applications, Applications of Mathematics, vol. 38, Springer-Verlag, Berlin/New York, 1998
[9] Entropy, Large Deviations, and Statistical Mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 2006 (Reprint of the 1985 original)
[10] Exact joint density–current probability function for the asymmetric exclusion process, Phys. Rev. Lett., Volume 93 (2004), p. 040602
[11] Exact probability function for bulk density and current in the asymmetric exclusion process, Phys. Rev. E, Volume 71 (2005), p. 036120
[12] Current fluctuations in stochastic lattice gases, Phys. Rev. Lett., Volume 94 (2005), p. 030601
[13] Exact free energy functional for a driven diffusive open stationary nonequilibrium system, Phys. Rev. Lett., Volume 89 (2002), p. 030601
[14] Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Comm. Math. Phys., Volume 201 (1999) no. 3, pp. 657-697
[15] Fourier's law: a challenge to theorists, Math. Phys., Volume 2000 (1993), pp. 128-150 | arXiv
[16] Probability of second law violations in shearing steady states, Phys. Rev. Lett., Volume 71 (1993), p. 2401
[17] Dynamical ensembles in stationary states, J. Stat. Phys., Volume 80 (1995), pp. 931-970
[18] Fluctuation Theorem for stochastic dynamics, J. Phys. A, Volume 31 (1998), p. 3719
[19] A Gallavotti–Cohen type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys., Volume 95 (1999), pp. 333-366
[20] The fluctuation theorem as a Gibbs property, J. Stat. Phys., Volume 95 (1999), pp. 367-392
[21] On the origin and the use of fluctuation relations for the entropy, Séminaire Poincaré, Volume 2 (2003), pp. 29-62
[22] Power fluctuations in stochastic models of dissipative systems, Physica A, Volume 331 (2004), pp. 69-89
[23] Breakdown of Gallavotti–Cohen symmetry for stochastic dynamics, Europhys. Lett., Volume 75 (2006), pp. 227-233
[24] Work fluctuations for a Brownian particle between two thermostats, J. Stat. Mech. (2006), p. P06006
[25] Chaotic hypothesis: Onsager reciprocity and fluctuation–dissipation theorem, J. Stat. Phys., Volume 84 (1996), pp. 899-926
[26] Entropy production in nonequilibrium thermodynamics: a point of view, Chaos, Volume 14 (2004), pp. 680-690
[27] The fluctuation theorem, Adv. Phys., Volume 51 (2002), pp. 1529-1585
[28] Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Fundamental Principles of Mathematical Sciences, vol. 324, Springer-Verlag, Berlin, 1999
[29] Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin/New York, 1991
[30] Scaling Limits of Interacting Particle Systems, Springer-Verlag, Berlin/New York, 1999
[31] Free energy functional for nonequilibrium systems: an exactly solvable case, Phys. Rev. Lett., Volume 87 (2001), p. 150601
[32] Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries, J. Stat. Phys., Volume 115 (2004), pp. 717-748
[33] Current fluctuations in the zero-range process with open boundaries, J. Stat. Mech. (2005), p. P08003
[34] Large deviations in weakly interacting boundary driven lattice gases, J. Stat. Phys., Volume 118 (2005), pp. 27-54
[35] Current fluctuations in nonequilibrium diffusive systems: An additivity principle, Phys. Rev. Lett., Volume 92 (2004), p. 180601
[36] Shot noise in mesoscopic conductors, Phys. Rep., Volume 336 (2000), pp. 1-166
[37] Universal statistics of transport in disordered conductors, Phys. Rev. B, Volume 51 (1995), pp. 4079-4083
[38] H. Spohn, Private communication
[39] Hydrodynamics and large deviations for simple exclusion processes, Commun. Pure Appl. Math., Volume 42 (1989), pp. 115-137
[40] Fluctuations in stationary non equilibrium states of irreversible processes, Phys. Rev. Lett., Volume 87 (2001), p. 040601
[41] Macroscopic fluctuation theory for stationary non equilibrium states, J. Stat. Phys., Volume 107 (2002), pp. 635-675
[42] Large deviations for the boundary driven symmetric simple exclusion process, Math. Phys. Anal. Geom., Volume 6 (2003), pp. 231-267
[43] Non equilibrium current fluctuations in stochastic lattice gases, J. Stat. Phys., Volume 123 (2006) no. 2, pp. 237-276
[44] Large deviation for a stochastic model of heat flow, J. Stat. Phys., Volume 121 (2005) no. 5–6, pp. 843-885
[45] Large deviation of the density profile in the symmetric simple exclusion process, J. Stat. Phys., Volume 107 (2002), pp. 599-634
[46] Stochastic path integral formulation of full counting statistics, Phys. Rev. Lett., Volume 90 (2003), p. 206801
[47] Fluctuation statistics in networks: A stochastic path integral approach, J. Math. Phys., Volume 45 (2004), pp. 4386-4417
[48] Kinetic theory of fluctuations in conducting systems, Phys. Rev. B, Volume 71 (2005), p. 085118
[49] Distribution of current in nonequilibrium diffusive systems and phase transitions, Phys. Rev. E (3), Volume 72 (2005) no. 6, p. 066110
[50] Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett., Volume 80 (1998), pp. 209-213
[51] Universal large deviation function of the Kardar–Parisi–Zhang equation in one dimension, J. Stat. Phys., Volume 94 (1999), pp. 1-30
[52] Current large deviations for asymmetric exclusion processes with open boundaries, J. Stat. Phys., Volume 123 (2006) no. 2, pp. 277-300
Cité par Sources :
⁎ We thank H. Spohn for useful suggestions. We acknowledge the support of the ACI-NIM 168 Transport Hors Equilibre of the Ministère de l'Education Nationale, France.
Commentaires - Politique