Comptes Rendus
Cumulants and large deviations of the current through non-equilibrium steady states
[Cumulants et grandes déviations du courant dans des états stationnaires hors équilibre]
Comptes Rendus. Physique, Volume 8 (2007) no. 5-6, pp. 540-555.

En généralisant la relation de bilan détaillé à des systèmes maintenus hors équilibre par contact avec deux réservoirs à des températures ou à des densités différentes, nous retrouvons le théorème de fluctuations pour la fonction de grandes déviations du courant. Pour de grands systèmes diffusifs, nous montrons comment la fonction de grandes déviations du courant peut être calculée simplement à l'aide d'un principe d'additivité. La validité de ce principe d'additivité et l'existence de transitions de phase sont discutées dans le cadre d'une théorie des fluctuations à l'échelle macroscopique.

Using a generalisation of detailed balance for systems maintained out of equilibrium by contact with 2 reservoirs at unequal temperatures or at unequal densities, one can recover the fluctuation theorem for the large deviation function of the current. For large diffusive systems, we show how the large deviation function of the current can be computed using a simple additivity principle. The validity of this additivity principle and the occurrence of phase transitions are discussed in the framework of the macroscopic fluctuation theory.

Reçu le :
Publié le :
DOI : 10.1016/j.crhy.2007.04.014
Keywords: Non-equilibrium steady state, Current fluctuations, Generalized detailed balance
Mot clés : Systèmes hors équilibre, Fluctuations du courant, Bilan détaillé généralisé

Thierry Bodineau 1 ; Bernard Derrida 2

1 Universités Paris VI & VII, Laboratoire de probabilités et modèles aléatoires, CNRS-UMR 7599, 4, place Jussieu, case 188, 75252 Paris cedex 05, France
2 Laboratoire de physique statistique, École normale supérieure, CNRS-UMR 8550, 24, rue Lhomond, 75231 Paris cedex 05, France
@article{CRPHYS_2007__8_5-6_540_0,
     author = {Thierry Bodineau and Bernard Derrida},
     title = {Cumulants and large deviations of the current through non-equilibrium steady states},
     journal = {Comptes Rendus. Physique},
     pages = {540--555},
     publisher = {Elsevier},
     volume = {8},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crhy.2007.04.014},
     language = {en},
}
TY  - JOUR
AU  - Thierry Bodineau
AU  - Bernard Derrida
TI  - Cumulants and large deviations of the current through non-equilibrium steady states
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 540
EP  - 555
VL  - 8
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.04.014
LA  - en
ID  - CRPHYS_2007__8_5-6_540_0
ER  - 
%0 Journal Article
%A Thierry Bodineau
%A Bernard Derrida
%T Cumulants and large deviations of the current through non-equilibrium steady states
%J Comptes Rendus. Physique
%D 2007
%P 540-555
%V 8
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2007.04.014
%G en
%F CRPHYS_2007__8_5-6_540_0
Thierry Bodineau; Bernard Derrida. Cumulants and large deviations of the current through non-equilibrium steady states. Comptes Rendus. Physique, Volume 8 (2007) no. 5-6, pp. 540-555. doi : 10.1016/j.crhy.2007.04.014. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.04.014/

[1] S. Lepri; R. Livi; A. Politi Thermal conduction in classical low-dimensional lattices, Phys. Rep., Volume 377 (2003), pp. 1-80

[2] D. Ruelle Conversations on nonequilibrium physics with an extraterrestrial, Phys. Today, Volume 57 (2004) no. 5, pp. 48-53

[3] D. Ruelle Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. Stat. Phys., Volume 95 (1999), pp. 393-468

[4] A. De Masi; P. Ferrari A remark on the hydrodynamics of the Zero-Range Processes, J. Stat. Phys., Volume 36 (1984), pp. 81-87

[5] S. Katz; J. Lebowitz; H. Spohn Non-equilibrium steady states of stochastic lattice gas models of fast ionic conductors, J. Stat. Phys., Volume 34 (1984), pp. 497-537

[6] B. Derrida; M.R. Evans; V. Hakim; V. Pasquier Exact solution of a 1d asymmetric exclusion model using a matrix formulation, J. Phys. A, Volume 26 (1993), pp. 1493-1517

[7] G. Schütz; E. Domany Phase transitions in an exactly soluble one-dimensional asymmetric exclusion model, J. Stat. Phys., Volume 72 (1993), pp. 277-296

[8] A. Dembo; O. Zeitouni Large Deviations Techniques and Applications, Applications of Mathematics, vol. 38, Springer-Verlag, Berlin/New York, 1998

[9] R. Ellis Entropy, Large Deviations, and Statistical Mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 2006 (Reprint of the 1985 original)

[10] M. Depken; R. Stinchcombe Exact joint density–current probability function for the asymmetric exclusion process, Phys. Rev. Lett., Volume 93 (2004), p. 040602

[11] M. Depken; R. Stinchcombe Exact probability function for bulk density and current in the asymmetric exclusion process, Phys. Rev. E, Volume 71 (2005), p. 036120

[12] L. Bertini; A. De Sole; D. Gabrielli; G. Jona-Lasinio; C. Landim Current fluctuations in stochastic lattice gases, Phys. Rev. Lett., Volume 94 (2005), p. 030601

[13] B. Derrida; J.L. Lebowitz; E.R. Speer Exact free energy functional for a driven diffusive open stationary nonequilibrium system, Phys. Rev. Lett., Volume 89 (2002), p. 030601

[14] J.-P. Eckmann; C.-A. Pillet; L. Rey-Bellet Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Comm. Math. Phys., Volume 201 (1999) no. 3, pp. 657-697

[15] F. Bonetto; J.L. Lebowitz; L. Rey-Bellet Fourier's law: a challenge to theorists, Math. Phys., Volume 2000 (1993), pp. 128-150 | arXiv

[16] D.J. Evans; E.G.D. Cohen; G.P. Morriss Probability of second law violations in shearing steady states, Phys. Rev. Lett., Volume 71 (1993), p. 2401

[17] G. Gallavotti; E.D.G. Cohen Dynamical ensembles in stationary states, J. Stat. Phys., Volume 80 (1995), pp. 931-970

[18] J. Kurchan Fluctuation Theorem for stochastic dynamics, J. Phys. A, Volume 31 (1998), p. 3719

[19] J.L. Lebowitz; H. Spohn A Gallavotti–Cohen type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys., Volume 95 (1999), pp. 333-366

[20] C. Maes The fluctuation theorem as a Gibbs property, J. Stat. Phys., Volume 95 (1999), pp. 367-392

[21] C. Maes On the origin and the use of fluctuation relations for the entropy, Séminaire Poincaré, Volume 2 (2003), pp. 29-62

[22] J. Farago Power fluctuations in stochastic models of dissipative systems, Physica A, Volume 331 (2004), pp. 69-89

[23] R.J. Harris; A. Rakos; G.M. Schütz Breakdown of Gallavotti–Cohen symmetry for stochastic dynamics, Europhys. Lett., Volume 75 (2006), pp. 227-233

[24] P. Visco Work fluctuations for a Brownian particle between two thermostats, J. Stat. Mech. (2006), p. P06006

[25] G. Gallavotti Chaotic hypothesis: Onsager reciprocity and fluctuation–dissipation theorem, J. Stat. Phys., Volume 84 (1996), pp. 899-926

[26] G. Gallavotti Entropy production in nonequilibrium thermodynamics: a point of view, Chaos, Volume 14 (2004), pp. 680-690

[27] D.J. Evans; D.J. Searles The fluctuation theorem, Adv. Phys., Volume 51 (2002), pp. 1529-1585

[28] T. Liggett Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Fundamental Principles of Mathematical Sciences, vol. 324, Springer-Verlag, Berlin, 1999

[29] H. Spohn Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin/New York, 1991

[30] C. Kipnis; C. Landim Scaling Limits of Interacting Particle Systems, Springer-Verlag, Berlin/New York, 1999

[31] B. Derrida; J.L. Lebowitz; E.R. Speer Free energy functional for nonequilibrium systems: an exactly solvable case, Phys. Rev. Lett., Volume 87 (2001), p. 150601

[32] B. Derrida; B. Douçot; P.-E. Roche Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries, J. Stat. Phys., Volume 115 (2004), pp. 717-748

[33] R.J. Harris; A. Rákos; G.M. Schütz Current fluctuations in the zero-range process with open boundaries, J. Stat. Mech. (2005), p. P08003

[34] F. van Wijland; Z. Rácz Large deviations in weakly interacting boundary driven lattice gases, J. Stat. Phys., Volume 118 (2005), pp. 27-54

[35] T. Bodineau; B. Derrida Current fluctuations in nonequilibrium diffusive systems: An additivity principle, Phys. Rev. Lett., Volume 92 (2004), p. 180601

[36] Y.M. Blanter; M. Büttiker Shot noise in mesoscopic conductors, Phys. Rep., Volume 336 (2000), pp. 1-166

[37] H. Lee; L.S. Levitov; A.Yu. Yakovets Universal statistics of transport in disordered conductors, Phys. Rev. B, Volume 51 (1995), pp. 4079-4083

[38] H. Spohn, Private communication

[39] C. Kipnis; S. Olla; S. Varadhan Hydrodynamics and large deviations for simple exclusion processes, Commun. Pure Appl. Math., Volume 42 (1989), pp. 115-137

[40] L. Bertini; A. De Sole; D. Gabrielli; G. Jona-Lasinio; C. Landim Fluctuations in stationary non equilibrium states of irreversible processes, Phys. Rev. Lett., Volume 87 (2001), p. 040601

[41] L. Bertini; A. De Sole; D. Gabrielli; G. Jona-Lasinio; C. Landim Macroscopic fluctuation theory for stationary non equilibrium states, J. Stat. Phys., Volume 107 (2002), pp. 635-675

[42] L. Bertini; A. De Sole; D. Gabrielli; G. Jona-Lasinio; C. Landim Large deviations for the boundary driven symmetric simple exclusion process, Math. Phys. Anal. Geom., Volume 6 (2003), pp. 231-267

[43] L. Bertini; A. De Sole; D. Gabrielli; G. Jona-Lasinio; C. Landim Non equilibrium current fluctuations in stochastic lattice gases, J. Stat. Phys., Volume 123 (2006) no. 2, pp. 237-276

[44] L. Bertini; D. Gabrielli; J. Lebowitz Large deviation for a stochastic model of heat flow, J. Stat. Phys., Volume 121 (2005) no. 5–6, pp. 843-885

[45] B. Derrida; J.L. Lebowitz; E.R. Speer Large deviation of the density profile in the symmetric simple exclusion process, J. Stat. Phys., Volume 107 (2002), pp. 599-634

[46] S. Pilgram; A.N. Jordan; E.V. Sukhorukov; M. Buttiker Stochastic path integral formulation of full counting statistics, Phys. Rev. Lett., Volume 90 (2003), p. 206801

[47] A.N. Jordan; E.V. Sukhorukov; S. Pilgram Fluctuation statistics in networks: A stochastic path integral approach, J. Math. Phys., Volume 45 (2004), pp. 4386-4417

[48] D.B. Gutman; A.D. Mirlin; Y. Gefen Kinetic theory of fluctuations in conducting systems, Phys. Rev. B, Volume 71 (2005), p. 085118

[49] T. Bodineau; B. Derrida Distribution of current in nonequilibrium diffusive systems and phase transitions, Phys. Rev. E (3), Volume 72 (2005) no. 6, p. 066110

[50] B. Derrida; J.L. Lebowitz Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett., Volume 80 (1998), pp. 209-213

[51] B. Derrida; C. Appert Universal large deviation function of the Kardar–Parisi–Zhang equation in one dimension, J. Stat. Phys., Volume 94 (1999), pp. 1-30

[52] T. Bodineau; B. Derrida Current large deviations for asymmetric exclusion processes with open boundaries, J. Stat. Phys., Volume 123 (2006) no. 2, pp. 277-300

Cité par Sources :

We thank H. Spohn for useful suggestions. We acknowledge the support of the ACI-NIM 168 Transport Hors Equilibre of the Ministère de l'Education Nationale, France.

Commentaires - Politique