[Distributions du travail et de la chaleur dans des systèmes hors équilibre]
Nous passons en revue et discutons les équations régissant la distribution du travail effectué sur un système manipulé hors d'équilibre, ainsi que celles qui régissent le flux d'entropie vers un réservoir dans un système hors d'équilibre. Nous exploitons ces équations dans l'étude de la transition de phase dans les chemins d'un modèle d'Ising champ moyen manipulé et de la fonction des grandes déviations pour le flux d'entropie dans le modèle d'exclusion asymétrique à probabilités de transition périodiques dans le temps.
We review and discuss the equations governing the distribution of work done on a system which is driven out of equilibrium by external manipulation, as well as those governing the entropy flow to a reservoir in a nonequilibrium system. We take advantage of these equations to investigate the path phase transition in a manipulated mean-field Ising model and the large-deviation function for the heat flow in the asymmetric exclusion process with periodically varying transition probabilities.
Publié le :
Mot clés : Procès hors équilibre, Distribution du travail, Flux d'entropie
Alberto Imparato 1 ; Luca Peliti 2
@article{CRPHYS_2007__8_5-6_556_0, author = {Alberto Imparato and Luca Peliti}, title = {Work and heat probability distributions in out-of-equilibrium systems}, journal = {Comptes Rendus. Physique}, pages = {556--566}, publisher = {Elsevier}, volume = {8}, number = {5-6}, year = {2007}, doi = {10.1016/j.crhy.2007.04.017}, language = {en}, }
Alberto Imparato; Luca Peliti. Work and heat probability distributions in out-of-equilibrium systems. Comptes Rendus. Physique, Volume 8 (2007) no. 5-6, pp. 556-566. doi : 10.1016/j.crhy.2007.04.017. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.04.017/
[1] Nonlinear fluctuation–dissipation relations and stochastic models in nonequilibrium thermodynamics I. generalized fluctuation–dissipation theorem, Physica, Volume 106 (1981) no. 3, pp. 443-479
[2] Nonlinear fluctuation–dissipation relations and stochastic models in nonequilibrium thermodynamics II. Kinetic potential and variational principles for nonlinear irreversible processes, Physica, Volume 106 (1981) no. 3, pp. 480-520
[3] Probability of second law violations in shearing steady states, Phys. Rev. Lett., Volume 71 (1993) no. 15, pp. 2401-2404
[4] Steady states, invariant measures, and response theory, Phys. Rev. E, Volume 52 (1995) no. 6, pp. 5839-5848
[5] Dynamical ensembles in stationary states, J. Stat. Phys., Volume 80 (1995) no. 5, pp. 931-970
[6] Nonequilibrium equality for free energy differences, Phys. Rev. Lett., Volume 78 (1997) no. 14, pp. 2690-2693
[7] Fluctuation theorem for stochastic dynamics, J. Phys. A: Math. Gen., Volume 31 (1998), pp. 3719-3729
[8] A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys., Volume 95 (1999) no. 1, pp. 333-365
[9] Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E, Volume 60 (1999) no. 3, pp. 2721-2726
[10] Path-ensemble averages in systems driven far from equilibrium, Phys. Rev. E, Volume 61 (2000) no. 3, pp. 2361-2366
[11] Free energy reconstruction from nonequilibrium single-molecule pulling experiments, Proc. Nat. Acad. Sci., Volume 98 (2001) no. 7, pp. 3658-3661
[12] Steady state thermodynamics of Langevin systems, Phys. Rev. Lett., Volume 86 (2001), p. 3463
[13] On the origin and the use of fluctuation relations for the entropy, Sém. Poincaré, Volume 2 (2003), pp. 29-62
[14] Time-reversed dynamical entropy and irreversibility in Markovian random processes, J. Stat. Phys., Volume 117 (2004), pp. 599-615
[15] Brownian motion, dynamical randomness and irreversibility, New J. Phys., Volume 7 (2005), p. 77
[16] Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett., Volume 95 (2005) no. 4, p. 040602
[17] Fluctuation relations for a driven Brownian particle, Phys. Rev. E, Volume 74 (2006) no. 2, p. 026106
[18] Fluctuation and dissipation of work in a joule experiment, Phys. Rev. Lett., Volume 96 (2006), p. 050601
[19] Work and heat fluctuations in two-state systems, J. Stat. Mech. (2004), p. P10016
[20] Work-probability distribution in systems driven out of equilibrium, Phys. Rev. E, Volume 72 (2005) no. 4, p. 046114
[21] Work probability distribution in single-molecule experiments, Europhys. Lett., Volume 69 (2005), pp. 643-650
[22] Work distribution and path integrals in general mean-field systems, Europhys. Lett., Volume 70 (2005), pp. 740-746
[23] Numerical integration of stochastic differential equations, J. Stat. Phys., Volume 51 (1988), pp. 95-108
[24] Integration of stochastic differential equations on a computer, Int. J. Modern Phys. C, Volume 13 (2002), pp. 1177-1195
[25] The distribution function of entropy flow in stochastic systems, J. Stat. Mech. (2007), p. L02001
[26] Thermodynamic Formalism, Cambridge Univ. Press, Cambridge, 2004
[27] Chaotic properties of systems with Markov dynamics, Phys. Rev. Lett., Volume 95 (2005), p. 010601
[28] Biased sampling of nonequilibrium trajectories: Can fast switching simulations outperform conventional free energy calculation methods?, J. Phys. Chem. B, Volume 109 (2005), pp. 6902-6915
[29] Phase transitions in an exactly soluble one-dimensional exclusion process, J. Stat. Phys., Volume 72 (1993), pp. 277-296
[30] Large deviation functional of the weakly asymmetric exclusion process, J. Stat. Phys., Volume 114 (2004), pp. 537-562
[31] A simple discrete model of Brownian motors: Time-periodic Markov chains, J. Stat. Phys., Volume 123 (2006), pp. 831-859
Cité par Sources :
Commentaires - Politique