[La thermodynamique de non-équilibre des petits systèmes]
La thermodynamique de non-équilibre des petits systèmes décrit les processus d'échanges d'énergie entre un système et son environnement dans le domaine des basses énergies de quelques où les fluctuations browniennes sont dominantes. Le but principal de cette discipline est d'identifier les blocs de construction d'une théorie générale décrivant les fluctuations d'énergie dans les processus de non-équilibre se produisant dans des systèmes s'étendant depuis la physique de la matière condensée jusqu'à la biophysique. Dans cet article, je discute quelques aspects des théorèmes de fluctuations et de la thermodynamique des chemins qui nécessitent une meilleure compréhension des grandes déviations en physique statistique de non-équilibre. Je montre aussi comment les expériences sur des molécules individuelles constituent une précieuse source de connaissance et d'information qui peut contribuer grandement à dévoiler les questions les plus importantes et pertinentes dans ce passionnant domaine de recherche.
Nonequilibrium thermodynamics of small systems describes energy exchange processes between a system and its environment in the low energy range of a few where Brownian fluctuations are dominant. The main goal of this discipline is to identify the building blocks of a general theory describing energy fluctuations in nonequilibrium processes occurring in systems ranging from condensed matter physics to biophysics. In this article I discuss some aspects about fluctuation theorems and path thermodynamics that call for the necessity of a better understanding of large deviations in nonequilibrium statistical physics. I also emphasize how single molecule experiments are a valuable source of knowledge and information that can greatly contribute to the unveiling of the most important and relevant questions in this exciting field of research.
Publié le :
Mot clés : Thermodynamique de non-équilibre, Expériences sur des molécules individuelles, Biophysique moléculaire
Felix Ritort 1, 2
@article{CRPHYS_2007__8_5-6_528_0, author = {Felix Ritort}, title = {The nonequilibrium thermodynamics of small systems}, journal = {Comptes Rendus. Physique}, pages = {528--539}, publisher = {Elsevier}, volume = {8}, number = {5-6}, year = {2007}, doi = {10.1016/j.crhy.2007.04.018}, language = {en}, }
Felix Ritort. The nonequilibrium thermodynamics of small systems. Comptes Rendus. Physique, Volume 8 (2007) no. 5-6, pp. 528-539. doi : 10.1016/j.crhy.2007.04.018. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.04.018/
[1] The nonequilibrium thermodynamics of small systems, Physics Today, Volume 58 (2005), pp. 43-48
[2] F. Ritort, Nonequilibrium fluctuations in small systems: From physics to biology, Advances in Chemical Physics 137 (2007), in press
[3] Mechanics of Motor Proteins and the Cytoskeleton, Sinauer, Sunderland, MA, 2001
[4] Thermodynamics and kinetics of a Brownian motor, Science, Volume 276 (1997), pp. 917-922
[5] Single molecule experiments in biological physics: methods and applications, Journal of Physics (Condensed Matter), Volume 18 (2006), p. R531-R583
[6] Biochemistry, Addison–Wesley Publishing Company, 2000
[7] The Stokes efficiency for molecular motors and its applications, Europhysics Letters, Volume 57 (2002), pp. 134-140
[8] Mechanical processes in biochemistry, Annual Reviews of Biochemistry, Volume 73 (2004), pp. 705-748
[9] Transcription against an applied force, Science, Volume 270 (1995), pp. 1653-1657
[10] Force and velocity measured for single molecules of RNA polymerase, Science, Volume 282 (1998), pp. 902-907
[11] Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase, Science, Volume 287 (2000), pp. 2497-2500
[12] Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase, Proceedings of the National Academy of Sciences, Volume 99 (2002), pp. 11682-11687
[13] Dissipation: the phase-space perspective, Physical Review Letters, Volume 98 (2007), p. 080602
[14] Equilibrium microstates which generate second law violating steady-states, Physical Review E, Volume 50 (1994), pp. 1645-1648
[15] Probability of second law violations in shearing steady states, Physical Review Letters, Volume 71 (1993), pp. 2401-2404
[16] Dynamical ensembles in nonequilibrium statistical mechanics, Physical Review Letters, Volume 74 (1995), pp. 2694-2697
[17] Fluctuation theorem for stochastic dynamics, Journal of Physics A, Volume 31 (1998), pp. 3719-3729
[18] A Gallavotti–Cohen type symmetry in the large deviation functional for stochastic dynamics, Journal of Statistical Physics, Volume 95 (1999), pp. 333-365
[19] The fluctuation theorem as a Gibbs property, Journal of Statistical Physics, Volume 95 (1999), pp. 367-392
[20] Fluctuation theorem for nonequilibrium reactions, Journal of Chemical Physics, Volume 120 (2004), pp. 8898-8905
[21] Entropy production along a stochastic trajectory and an integral fluctuation theorem, Physical Review Letters, Volume 95 (2005), p. 040602
[22] Nonequilibrium equality for free-energy differences, Physical Review Letters, Volume 78 (1997), pp. 2690-2693
[23] Entropy production fluctuation theorem and the nonequilibrium work relation for free-energy differences, Physical Review E, Volume 60 (1999), pp. 2721-2726
[24] Path-ensemble averages in systems driven far from equilibrium, Physical Review E, Volume 61 (2000), pp. 2361-2366
[25] Equilibrium theory for a particle pulled by a moving optical trap, Journal of Chemical Physics, Volume 126 (2007), p. 111102
[26] Fluctuation and dissipation of work in a Joule experiment, Physical Review Letters, Volume 96 (2006), p. 050601
[27] A two-state kinetic model for the unfolding of single molecules by mechanical force, Proceedings of the National Academy of Sciences, Volume 99 (2002), pp. 13544-13548
[28] Work and heat fluctuations in two-state systems: a trajectory thermodynamics formalism, Journal of Statistical Mechanics (Theor. Exp.) (2004), p. P10016
[29] Rare events and the convergence of exponentially averaged work values, Physical Review E, Volume 73 (2006), p. 046105
[30] Work distribution and path integrals in mean-field systems, Europhysics Letters, Volume 70 (2005), pp. 740-746
[31] Work probability distribution in systems driven out of equilibrium, Physical Review E, Volume 72 (2005), p. 046114
[32] Reaction-rate theory: fifty years after Kramers, Review of Modern Physics, Volume 62 (1990), pp. 251-341
[33] The Kramers problem: fifty years of development, Physics Reports, Volume 209 (1991), pp. 1-71
[34] Probing the relationship between force—lifetime—and chemistry in single molecular bonds, Annual Reviews of Biophysics and Biomolecular Structure, Volume 30 (2001), pp. 105-128
[35] Dynamic force spectroscopy (H. Flyvbjerg; F. Jülicher; P. Ormos; F. David, eds.), Physics of Biomolecules and Cells, vol. LXXV, Springer-Verlag, Berlin, 2002, pp. 145-204
[36] Spontaneous relaxation in generalized models for glassy dynamics, Journal of Physical Chemistry B, Volume 108 (2004), pp. 6893-6900
[37] Reversible unfolding of single RNA molecules by mechanical force, Science, Volume 292 (2001), pp. 733-737
[38] Equilibrium information from nonequilibrium measurements in an experimental test of the Jarzynski equality, Science, Volume 296 (2002), pp. 1833-1835
[39] Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies, Nature, Volume 437 (2005), pp. 231-234
[40] Free energy functional for nonequilibrium systems: an exactly solvable case, Physical Review Letters, Volume 87 (2001), p. 150601
Cité par Sources :
Commentaires - Politique