[Théorèmes de fluctuations relativistes]
Pour révéler comment la physique de non-équilibre et la théorie relativiste se combinent, cet article étudie le mouvement brownien relativiste sous l'effet de l'expansion cosmique. Deux théorèmes de fluctuations sont présentés et démontrés pour l'entropie Δs qui est localement produite dans cette situation de non-équilibre extrême. Le premier,
To reveal how nonequilibrium physics and relativity theory intertwine, this article studies relativistic Brownian motion under cosmic expansion. Two fluctuation theorems for the entropy Δs, which is locally produced in this extreme nonequilibrium situation, are presented and proven. The first,
Publié le :
Mots-clés : Théorèmes de fluctuations, Physique de non-équilibre
Axel Fingerle 1
@article{CRPHYS_2007__8_5-6_696_0, author = {Axel Fingerle}, title = {Relativistic fluctuation theorems}, journal = {Comptes Rendus. Physique}, pages = {696--713}, publisher = {Elsevier}, volume = {8}, number = {5-6}, year = {2007}, doi = {10.1016/j.crhy.2007.05.015}, language = {en}, }
Axel Fingerle. Relativistic fluctuation theorems. Comptes Rendus. Physique, Work, dissipation, and fluctuations in nonequilibrium physics, Volume 8 (2007) no. 5-6, pp. 696-713. doi : 10.1016/j.crhy.2007.05.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.05.015/
[1] The Physical Basis of the Direction of Time, Springer-Verlag, Berlin/New York, 2001
[2] Nature, 148 (2003), p. 175
[3] Phys. Rev. D, 32 (1985), p. 2489
[4] Phys. Rev. D, 32 (1985), p. 2496
[5] Phys. Rev. D, 47 (1993), p. 5342
[6] J. Phys. A, 35 (2002), p. 7243
[7] Found. Phys., 33 (2003), p. 877
[8] Physica, 106A (1981), p. 443 (and references therein)
[9] Phys. Rev. Lett., 71 (1993), p. 2401
[10] J. Stat. Phys., 74 (1995), p. 2694
[11] J. Phys. A, 31 (1998), p. 3719
[12] Phys. Rev. Lett., 91 (2003), p. 110601
[13] Phys. Rev. Lett., 95 (2005), p. 040602
[14] J. Stat. Phys., 78 (1997), p. 2690
[15] Ann. Phys., 57 (1896), p. 773
[16] Trans. Conn. Acad., 3 (1875), p. 229
[17] J. Stat. Phys., 88 (1997), p. 945
[18] Phys. Rev. E, 71 (2005), p. 016124
[19] Phys. Rev. E, 72 (2005), p. 036106
[20] Ann. Phys., 17 (1905), p. 549
[21] Ann. Phys., 17 (1905), p. 891
[22] Adv. Phys., 51 (2002), p. 1529
[23] J. Stat. Phys., 110 (2003), p. 269
[24] et al. Nature, 60 (1999), p. 2721
[25] The Fokker–Planck Equation, Springer-Verlag, Berlin/New York, 1996
[26] Phys. Rev. Lett., 96 (2006), p. 240601
[27] Phys. Rev. C, 73 (2006), p. 034913
[28] Gas Discharge Physics, Springer-Verlag, Berlin/New York, 1991
[29] Ann. Phys., 34 (1911), p. 856
[30] Ann. Math. Stat., Information Theory And Statistics, 22, Dover Publications, New York, 1951, p. 79
[31] Cosmological Physics, Cambridge Univ. Press., Cambridge, UK, 1999
[32] Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge, UK, 1994 (p. 59)
[33] Gravitation and Cosmology, Wiley, New York, 1972 (p. 508)
[34] J. Math. Phys., 46 (2005), p. 103303
- Fluctuation theorems in general relativistic stochastic thermodynamics, Physical Review E, Volume 111 (2025) no. 2 | DOI:10.1103/physreve.111.024102
- General relativistic fluctuation theorems, Physics Letters B, Volume 860 (2025), p. 139220 | DOI:10.1016/j.physletb.2024.139220
- Relativistic Stochastic Mechanics I: Langevin Equation from Observer’s Perspective, Journal of Statistical Physics, Volume 190 (2023) no. 12 | DOI:10.1007/s10955-023-03204-5
- Stochastic thermodynamics of relativistic Brownian motion, New Journal of Physics, Volume 22 (2020) no. 7, p. 073054 | DOI:10.1088/1367-2630/ab9ce6
- Quantum work statistics of charged Dirac particles in time-dependent fields, Physical Review E, Volume 92 (2015) no. 3 | DOI:10.1103/physreve.92.032137
- Fluctuation and dissipation in de Sitter space, Journal of High Energy Physics, Volume 2014 (2014) no. 8 | DOI:10.1007/jhep08(2014)028
- Time‐Reversal Symmetry Relations for Currents in Quantum and Stochastic Nonequilibrium Systems, Nonequilibrium Statistical Physics of Small Systems (2013), p. 213 | DOI:10.1002/9783527658701.ch7
- Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on Progress in Physics, Volume 75 (2012) no. 12, p. 126001 | DOI:10.1088/0034-4885/75/12/126001
- Stationarity, ergodicity, and entropy in relativistic systems, EPL (Europhysics Letters), Volume 87 (2009) no. 3, p. 30005 | DOI:10.1209/0295-5075/87/30005
- Relativistic Brownian motion, Physics Reports, Volume 471 (2009) no. 1, p. 1 | DOI:10.1016/j.physrep.2008.12.001
- Fluctuation theorem for entropy production during effusion of a relativistic ideal gas, Physical Review E, Volume 77 (2008) no. 2 | DOI:10.1103/physreve.77.022103
Cité par 11 documents. Sources : Crossref
Commentaires - Politique