[Diffusion magnétique résonnante des rayons X mous dans les nanostructures magnétiques]
La diffusion magnétique résonnante des rayons X mous offre une possibilité unique de sonder les structures magnétiques à l'échelle nanoscopique avec une sensibilité à l'élément, au site et à la valence. Cette nouvelle technique, qui combine la diffusion des rayons X avec le dichroïsme magnétique circulaire et linéaire, est idéalement adaptée à l'étude des super-réseaux magnétiques et des structures de domaines magnétiques. Nous présentons l'analyse théorique de l'utilisation de la dépendance en polarisation pour déterminer le profil du vecteur magnétisation. Ceci est illustré par des exemples d'étude des domaines de fermeture dans les structures magnétiques auto-organisées, de l'ordre magnétique dans des échantillons structurés et de la configuration locale de nano-objets à l'aide de rayons X cohérents.
Soft X-ray resonant magnetic scattering offers a unique element-, site- and valence-specific probe to study magnetic structures on the nanoscopic length scale. This new technique, which combines X-ray scattering with X-ray magnetic circular and linear dichroism, is ideally suited to investigate magnetic superlattices and magnetic domain structures. The theoretical analysis of the polarization dependence to determine the vector magnetization profile is presented. This is illustrated with examples studying the closure domains in self-organising magnetic domain structures, the magnetic order in patterned samples, and the local configuration of magnetic nano-objects using coherent X-rays.
Mots-clés : Diffusion des rayons X, Nanostructures, Analyse de polarisation, Dichroïsme magnétique, Radiation cohérente, Figure de speckle, Domaines magnétiques
Gerrit van der Laan 1
@article{CRPHYS_2008__9_5-6_570_0, author = {Gerrit van der Laan}, title = {Soft {X-ray} resonant magnetic scattering of magnetic nanostructures}, journal = {Comptes Rendus. Physique}, pages = {570--584}, publisher = {Elsevier}, volume = {9}, number = {5-6}, year = {2008}, doi = {10.1016/j.crhy.2007.06.004}, language = {en}, }
Gerrit van der Laan. Soft X-ray resonant magnetic scattering of magnetic nanostructures. Comptes Rendus. Physique, Synchrotron x-rays and condensed matter, Volume 9 (2008) no. 5-6, pp. 570-584. doi : 10.1016/j.crhy.2007.06.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.06.004/
[1] Phys. Rev. B, 2 (1970), p. 3556
[2] Acta Cryst. A, 37 (1981), p. 314
[3] Phys. Rev. B, 37 (1988), p. 1779
[4] Introduction to the Theory of Thermal Neutron Scattering, Cambridge University Press, Cambridge, 1978
[5] Phys. Rev. Lett., 55 (1985), p. 2086
[6] Phys. Rev. B, 34 (1986), p. 6529
[7] J. Appl. Phys., 57 (1985), p. 3615
[8] Phys. Rev. Lett., 61 (1988), p. 1241
[9] Phys. Rev. Lett., 61 (1988), p. 1245
[10] Phys. Rev. B, 43 (1991), p. 13401
[11] Phys. Rev. B, 32 (1985), p. 5107
[12] Science, 297 (2002), p. 581
[13] Phys. Rev. Lett., 92 (2004), p. 056403
[14] Phys. Rev. Lett., 90 (2003), p. 187201
[15] Phys. Rev. B, 71 (2005), p. 214421
[16] Synchr. Rad. News, 12 (1999) no. 3, p. 5
[17] Synchr. Rad. News, 14 (2001) no. 5, p. 32
[18] Science, 284 (1999), p. 2166
[19] X-ray magnetic scattering in magnetism and synchrotron radiation (E. Beaurepaire; B. Carrière; J.P. Kappler, eds.), Les Ulis, F, Les Editions de Physique, Les Ulis, 1996, pp. 245-274
[20] Phys. Rev. B, 61 (2000), p. R3792
[21] Phys. Rev. Lett., 77 (1996), p. 3925
[22] J. Appl. Phys., 81 (1997), p. 4353
[23] J. Appl. Phys., 85 (1999), p. 4619
[24] Phys. Rev. B, 62 (2000), p. 12216
[25] Phys. Rev. B, 64 (2001), p. 092401
[26] Phys. Rev. Lett., 81 (1998), p. 1521
[27] Phys. Rev. B, 51 (1995), p. 10240
[28] Phys. Rev. B, 75 (2007), p. 184408
[29] Nucl. Instrum. Methods A, 467–468 (2001), p. 1101
[30] Curr. Opin. Solid State Mater. Sci., 10 (2006), p. 120
[31] Modern Techniques for Characterizing Magnetic Materials, Springer-Verlag, Berlin, 2005 (Chapter 4)
[32] A useful introduction can be found in M. Altarelli, Lect. Notes in Phys., vol. 697, 2006, p. 201
[33] Rev. Mod. Phys., 66 (1994), p. 1509
[34] Phys. Rev. Lett., 90 (2003), p. 117204
[35] Phys. Rev. Lett., 94 (2005), p. 039701
[36] Rev. Mod. Phys., 29 (1957), p. 74
[37] Physica B, 283 (2000), p. 171
[38] J. Synchrotron Rad., 7 (2000), p. 178
[39] Superlattices and Microstructures, 34 (2003), p. 107
[40] Phys. Rev. B, 55 (1997), p. 12552
[41] J. Appl. Phys., 85 (1999), p. 4604
[42] Phys. Rev. B, 59 (1999), p. 1105
[43] J. Appl. Phys., 87 (2000), p. 5469
[44] Magnetic Domains: The Analysis of Magnetic Microstructures, Springer-Verlag, Berlin, 1998
[45] J. Phys. D, 29 (1996), p. 2352
[46] Physica B, 345 (2004), p. 143
[47] Phys. Rev. B, 71 (2005), p. 184436
[48] Phys. Rev. B, 62 (2000), p. 5779
[49] IEEE Trans. Magn., 37 (2001), p. 1661
[50] Phys. Rev. B, 66 (2002), p. 024435
[51] Principles of Optics, Cambridge University Press, Cambridge, 1997 (Chapter X)
[52] G. Beutier, A. Marty, F. Livet, G. van der Laan, S. Stanescu, P. Bencok, Rev. Sci. Instrum. (2007), in press
[53] Physica B, 345 (2004), p. 137
[54] J. Phys.: Condens. Matter, 16 (2004), p. 5003
[55] Phys. Rev. B, 66 (2002), p. 172404
[56] Phys. Rev. B, 68 (2003), p. 104419
[57] Acta Cryst. A, 63 (2007), p. 87
[58] Nature, 432 (2004), p. 885
[59] Appl. Phys. Lett., 89 (2006), p. 163112
[60] Phys. Rev. B, 70 (2004), p. 180402
[61] Phys. Rev. Lett., 90 (2003), p. 175502
[62] Phys. Rev. B, 70 (2004), p. 094417
[63] J. Synchrotron Rad., 11 (2004), p. 254
[64] Phys. Rev. Lett., 93 (2004), p. 037206
[65] N.D. Telling, unpublished
- Sensing multiferroic states non-invasively using optical second harmonic generation, Microstructures, Volume 4 (2024) no. 1 | DOI:10.20517/microstructures.2023.50
- Depth-dependent magnetic crossover in a room-temperature skyrmion-hosting multilayer, Physical Review B, Volume 109 (2024) no. 13 | DOI:10.1103/physrevb.109.134423
- X-ray detected ferromagnetic resonance techniques for the study of magnetization dynamics, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 540 (2023), p. 85 | DOI:10.1016/j.nimb.2023.04.005
- Spatially Resolving the Magnetic Configuration of Trilayer Submicrometer Disks with Vortex Chiral Asymmetry Using X-Ray Resonant Magnetic Scattering, Physical Review Applied, Volume 20 (2023) no. 1 | DOI:10.1103/physrevapplied.20.014008
- Observation of the skyrmion side-face state in a chiral magnet, Physical Review B, Volume 107 (2023) no. 6 | DOI:10.1103/physrevb.107.l060405
- Three-dimensional tomographic imaging of the magnetization vector field using Fourier transform holography, Physical Review B, Volume 107 (2023) no. 9 | DOI:10.1103/physrevb.107.094425
- Resonant Elastic X-Ray Scattering of Antiferromagnetic Superstructures in EuPtSi3, Physical Review Letters, Volume 130 (2023) no. 26 | DOI:10.1103/physrevlett.130.266701
- Synchrotron radiation techniques and their application to actinide materials, Reviews of Modern Physics, Volume 95 (2023) no. 1 | DOI:10.1103/revmodphys.95.015001
- Element-selective analysis of ultrafast demagnetization in Co/Pt multilayers exhibiting large perpendicular magnetic anisotropy, Applied Physics Letters, Volume 120 (2022) no. 7 | DOI:10.1063/5.0080275
- Chiral structures of electric polarization vectors quantified by X-ray resonant scattering, Nature Communications, Volume 13 (2022) no. 1 | DOI:10.1038/s41467-022-29359-5
- Time-resolved measurement of spin excitations in Cu2OSeO3, Physical Review B, Volume 106 (2022) no. 17 | DOI:10.1103/physrevb.106.174409
- Origin of circular dichroism in resonant elastic x-ray scattering from magnetic and polar chiral structures, Physical Review B, Volume 106 (2022) no. 3 | DOI:10.1103/physrevb.106.035116
- Structural Chirality of Polar Skyrmions Probed by Resonant Elastic X-Ray Scattering, Physical Review Letters, Volume 129 (2022) no. 24 | DOI:10.1103/physrevlett.129.247601
- Three‐Dimensional Magnetic Structures of B20 Chiral Magnets, Spintronics (2022), p. 203 | DOI:10.1002/9781119698968.ch8
- Depth profiling of 3D skyrmion lattices in a chiral magnet—A story with a twist, AIP Advances, Volume 11 (2021) no. 1 | DOI:10.1063/9.0000072
- Magnetization dynamics in ordered spin structures revealed by diffractive and reflectometry ferromagnetic resonance, AIP Advances, Volume 11 (2021) no. 1 | DOI:10.1063/9.0000058
- General treatment of off-specular resonant soft x-ray magnetic scattering using the distorted-wave Born approximation: Numerical algorithm and experimental studies with hybrid chiral domain structures, Physical Review B, Volume 103 (2021) no. 18 | DOI:10.1103/physrevb.103.184401
- Robust long-range magnetic correlation across antiphase domain boundaries in Sr2CrReO6, Physical Review B, Volume 103 (2021) no. 6 | DOI:10.1103/physrevb.103.064410
- Creation of a Chiral Bobber Lattice in Helimagnet-Multilayer Heterostructures, Physical Review Letters, Volume 126 (2021) no. 1 | DOI:10.1103/physrevlett.126.017204
- Periodically modulated skyrmion strings in Cu2OSeO3, npj Quantum Materials, Volume 6 (2021) no. 1 | DOI:10.1038/s41535-021-00373-y
- Detection of the Chiral Spin Structure in Ferromagnetic SrRuO3 Thin Film, ACS Applied Materials Interfaces, Volume 12 (2020) no. 33, p. 37757 | DOI:10.1021/acsami.0c10545
- Mode-Resolved Detection of Magnetization Dynamics Using X-ray Diffractive Ferromagnetic Resonance, Nano Letters, Volume 20 (2020) no. 1, p. 345 | DOI:10.1021/acs.nanolett.9b03989
- Chiral asymmetry detected in a 2D array of permalloy square nanomagnets using circularly polarized x-ray resonant magnetic scattering, Nanotechnology, Volume 31 (2020) no. 2, p. 025702 | DOI:10.1088/1361-6528/ab46d7
- Electric and antiferromagnetic chiral textures at multiferroic domain walls, Nature Materials, Volume 19 (2020) no. 4, p. 386 | DOI:10.1038/s41563-019-0516-z
- Ferromagnetic Resonance with Magnetic Phase Selectivity by Means of Resonant Elastic X-Ray Scattering on a Chiral Magnet, Physical Review Letters, Volume 123 (2019) no. 16 | DOI:10.1103/physrevlett.123.167201
- Measurement of the Magnetic Long-Range Order, Chiral and Topological Nature of Magnetic Skyrmions (2018), p. 31 | DOI:10.1007/978-3-319-98252-6_2
- Measurement of the Topological Winding Number, Chiral and Topological Nature of Magnetic Skyrmions (2018), p. 71 | DOI:10.1007/978-3-319-98252-6_4
- Resonant x-ray diffraction from chiral electric-polarization structures, Physical Review B, Volume 98 (2018) no. 15 | DOI:10.1103/physrevb.98.155410
- Direct Observation of Twisted Surface skyrmions in Bulk Crystals, Physical Review Letters, Volume 120 (2018) no. 22 | DOI:10.1103/physrevlett.120.227202
- Chirality in Magnetic Multilayers Probed by the Symmetry and the Amplitude of Dichroism in X-Ray Resonant Magnetic Scattering, Physical Review Letters, Volume 120 (2018) no. 3 | DOI:10.1103/physrevlett.120.037202
- , Advances in Laboratory-based X-Ray Sources, Optics, and Applications VI (2017), p. 2 | DOI:10.1117/12.2274296
- Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3, Nature Communications, Volume 8 (2017) no. 1 | DOI:10.1038/ncomms14619
- Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft x-ray scattering, Physical Review B, Volume 96 (2017) no. 9 | DOI:10.1103/physrevb.96.094401
- Multidomain Skyrmion Lattice State in Cu2OSeO3, Nano Letters, Volume 16 (2016) no. 5, p. 3285 | DOI:10.1021/acs.nanolett.6b00845
- Resonant elastic x-ray scattering from the skyrmion lattice inCu2OSeO3, Physical Review B, Volume 93 (2016) no. 21 | DOI:10.1103/physrevb.93.214420
- Magnetic diffuse scattering in artificial kagome spin ice, Physical Review B, Volume 93 (2016) no. 22 | DOI:10.1103/physrevb.93.224413
- Chapter 3 Resonant X-Ray Scattering Studies on Skyrmions, Skyrmions (2016), p. 63 | DOI:10.1201/9781315284170-4
- ALICE—An advanced reflectometer for static and dynamic experiments in magnetism at synchrotron radiation facilities, Review of Scientific Instruments, Volume 86 (2015) no. 6 | DOI:10.1063/1.4921716
- X-ray magnetic circular dichroism—A versatile tool to study magnetism, Coordination Chemistry Reviews, Volume 277-278 (2014), p. 95 | DOI:10.1016/j.ccr.2014.03.018
- Applications of soft x-ray magnetic dichroism, Journal of Physics: Conference Series, Volume 430 (2013), p. 012127 | DOI:10.1088/1742-6596/430/1/012127
- Two-dimensional resonant magnetic soft X-ray scattering set-up for extreme sample environment, Journal of Synchrotron Radiation, Volume 20 (2013) no. 1, p. 181 | DOI:10.1107/s0909049512041325
- Anisotropic X-ray Magnetic Linear Dichroism, Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources, Volume 151 (2013), p. 239 | DOI:10.1007/978-3-319-03032-6_8
- 25 Years of Magnetic X-Ray Dichroism, Magnetism and Synchrotron Radiation: Towards the Fourth Generation Light Sources, Volume 151 (2013), p. 257 | DOI:10.1007/978-3-319-03032-6_9
- Holographic imaging of interlayer coupling in Co/Pt/NiFe, New Journal of Physics, Volume 15 (2013) no. 2, p. 023045 | DOI:10.1088/1367-2630/15/2/023045
- Extended reciprocal space observation of artificial spin ice with x-ray resonant magnetic scattering, Physical Review B, Volume 88 (2013) no. 21 | DOI:10.1103/physrevb.88.214424
- Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering, AIP Advances, Volume 2 (2012) no. 2 | DOI:10.1063/1.4732147
- X-ray resonant magnetic scattering from patterned multilayers, Physical Review B, Volume 86 (2012) no. 6 | DOI:10.1103/physrevb.86.064426
- Dzyaloshinskii–Moriya interaction: How to measure its sign in weak ferromagnets?, JETP Letters, Volume 92 (2010) no. 6, p. 383 | DOI:10.1134/s0021364010180050
- RASOR: An advanced instrument for soft x-ray reflectivity and diffraction, Review of Scientific Instruments, Volume 81 (2010) no. 7 | DOI:10.1063/1.3458004
- Magnetic memory in discrete media observed by coherent soft x-ray resonant scattering, New Journal of Physics, Volume 11 (2009) no. 11, p. 113026 | DOI:10.1088/1367-2630/11/11/113026
Cité par 50 documents. Sources : Crossref
Commentaires - Politique