Comptes Rendus
Helium and point defect accumulation: (ii) kinetic modelling
[Accumulation d' hélium et de défauts ponctuels : (ii) modélisation cinétique]
Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 401-408.

Les questions les plus importantes concernant la modélisation de la diffusion de l'hélium et de la formation de défauts dans le α-Fe sont passées en revue dans cet article. Pendant ces dernières années les calculs ab initio ont apporté une meilleure compréhension de la stabilité des défauts et de leur migration dans le fer pur, ainsi que des valeurs précises de l'énergie de migration de l'hélium et des interactions He-lacune. Ces données ont été utilisées par divers auteurs afin d'étudier l'évolution des défauts sous différentes conditions d'irradiation avec des modèles de type Monte Carlo et cinétique chimique. Dans cet article, nous discutons les principaux résultats obtenus, en particulier ceux sur la désorption de l'hélium. Nous discutons l'influence d'impuretés telles que le carbone ainsi que les plus importants défi pour la modélisation.

The main outstanding issues regarding modeling He diffusion and defect accumulation in α-iron are reviewed. During recent years, first principles calculations have provided a better understanding of defect stability and migration properties in pure α-iron, and accurate values of energetics of He migration and He-vacancy interactions. Such information has been used by several authors to study damage evolution under different irradiation conditions using both kinetic Monte Carlo and rate theory models. In this article a review of the main results is provided, in particular for He desorption. The influence of impurities such as carbon is discussed as well as the main challenges ahead for modeling.

Publié le :
DOI : 10.1016/j.crhy.2007.09.004
Keywords: Kinetic Monte Carlo calculations, Ab initio calculations, Rate theory, Helium, Iron, Radiation damage, Defects
Mots-clés : Modèles Monte Carlo cinétique, Calculs ab initio, Modèle de diffusion, Hélium, Fer, Défauts d'irradiation, Défauts

Maria José Caturla 1 ; Christophe J. Ortiz 1 ; Chu Chun Fu 2

1 Dept. Física Aplicada, Universidad de Alicante, 03690 Alicante, Spain
2 Service de recherches de métallurgie physique, CEA/Saclay, 91191 Gif-sur-Yvette, France
@article{CRPHYS_2008__9_3-4_401_0,
     author = {Maria Jos\'e Caturla and Christophe J. Ortiz and Chu Chun Fu},
     title = {Helium and point defect accumulation: (ii) kinetic modelling},
     journal = {Comptes Rendus. Physique},
     pages = {401--408},
     publisher = {Elsevier},
     volume = {9},
     number = {3-4},
     year = {2008},
     doi = {10.1016/j.crhy.2007.09.004},
     language = {en},
}
TY  - JOUR
AU  - Maria José Caturla
AU  - Christophe J. Ortiz
AU  - Chu Chun Fu
TI  - Helium and point defect accumulation: (ii) kinetic modelling
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 401
EP  - 408
VL  - 9
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.09.004
LA  - en
ID  - CRPHYS_2008__9_3-4_401_0
ER  - 
%0 Journal Article
%A Maria José Caturla
%A Christophe J. Ortiz
%A Chu Chun Fu
%T Helium and point defect accumulation: (ii) kinetic modelling
%J Comptes Rendus. Physique
%D 2008
%P 401-408
%V 9
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2007.09.004
%G en
%F CRPHYS_2008__9_3-4_401_0
Maria José Caturla; Christophe J. Ortiz; Chu Chun Fu. Helium and point defect accumulation: (ii) kinetic modelling. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 401-408. doi : 10.1016/j.crhy.2007.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.004/

[1] G.W. Greenwood; A.J.E. Foreman; E.A. Rimmer J. Nucl. Mater., 4 (1959), p. 305

[2] R. Andreani; E. Diegele; R. Laesser; B. van der Schaaf J. Nucl. Mater., 329 (2004), p. 20

[3] F.A. Garner, Materials Science and Technology, vol. 10A, VCH, Germany, 1994 (Chapter 6)

[4] N. Baluc et al. Nucl. Fusion, 44 (2004), pp. 56-61

[5] K. Nordlund; S. Dudarev C. R. Physique, 9 (2008) no. 3–4, p. 343

[6] R. Vassen; H. Trinkaus; P. Jung Phys. Rev. B, 44 (1991), p. 4206

[7] K. Morishita; R. Sugano; B.D. Wirth J. Nucl. Mater., 323 (2003), p. 243

[8] C.C. Fu; F. Willaime Phys. Rev. B, 72 (2005), p. 064117

[9] T. Seletskaia; Y.N. Osetsky; R.E. Stoller Phys. Rev. Lett., 94 (2005), p. 046403

[10] C.C. Fu; F. Willaime C.R. Physique, 9 (2008) no. 3–4, p. 335

[11] H. Trinkaus; B.N. Singh J. Nucl. Mater., 323 (2003), p. 229

[12] H. Ullmaier, Numerical data and functional relationships in science and technology, Landolt–Börnstein New Series, vol. III/25, 1991, p. 381

[13] L.K. Mansur; E.H. Lee; P.J. Maziasz; A.P. Rowcliffe J. Nucl. Mater., 141–143 (1986), p. 633

[14] L. Ventelon; B.D. Wirth; C. Domain J. Nucl. Mater., 351 (2006), p. 119

[15] R. Sugano; K. Morishita; H. Iwakiri; N. Yoshida J. Nucl. Mater., 307–311 (2003), p. 941

[16] T. Seletskaia; Yu.N. Osetsky; R.E. Stoller; G.M. Stocks J. Nucl. Mater., 351 (2006), p. 109

[17] C.C. Fu; F. Willaime J. Nucl. Mater., 367 (2007), p. 244

[18] C. Domain; C.S. Becquart; J. Foct Phys. Rev. B, 69 (2004), p. 144112

[19] C.C. Fu; J. Dalla Torre; F. Willaime; J.-L. Bocquet; A. Barbu Nature Mat., 4 (2004), pp. 68-74

[20] F. Willaime; C.C. Fu; M.C. Marinica; J. Dalla Torre Nucl. Instrum. Meth. B, 228 (2005), p. 92

[21] D.J. Bacon; F. Gao; Y.N. Osetsky J. Nucl. Mater., 276 (2000), p. 1

[22] B.D. Wirth; G.R. Odette; D. Maroudas; G.E. Lucas J. Nucl. Mater., 276 (2000), p. 33

[23] N. Soneda; T. Diaz de la Rubia Phil. Mag. A, 81 (2001), p. 331

[24] A.E. Ward; S.B. Fisher J. Nucl. Mater., 166 (1989), p. 227

[25] J. Marian; B.D. Wirth; J.M. Perlado Phys. Rev. Lett., 88 (2002), p. 255507

[26] K. Arakawa; M. Hatanaka; E. Kuramoto; K. Ono; H. Mori Phys. Rev. Lett., 96 (2006), p. 125506

[27] M.W. Finnis; J.E. Sinclair Phil. Mag. A, 50 (1984), p. 45

[28] M.J. Caturla; N. Soneda; E. Alonso; B.D. Wirth; T. Diaz de la Rubia; J.M. Perlado J. Nucl. Mater., 276 (2000), p. 13

[29] N. Soneda; S. Ishino; A. Takahashi; K. Dohi J. Nucl. Mater., 323 (2003), p. 169

[30] C. Domain; C. Becquart Phys. Rev. B, 65 (2001), p. 024103

[31] A. Hardouin Duparc; C. Moingeon; N. Smetniansky-de-Grande; A. Barbu J. Nucl. Mater., 302 (2002), p. 143

[32] A. Barbu C. R. Physique, 9 (2008) no. 3–4, p. 353

[33] K. Morishita; R. Sugano Nucl. Instrum. Meth. B, 255 (2007), p. 52

[34] C.J. Ortiz; M.J. Caturla; C.C. Fu; F. Willaime Phys. Rev. B, 75 (2007), p. 100102

[35] M.J. Caturla; C.J. Ortiz J. Nucl. Mater., 362 (2007), p. 141

[36] V.A. Borodin; P.V. Vladimirov J. Nucl. Mater., 362 (2007), pp. 161-166

[37] V.A. Borodin; P.V. Vladimirov; A. Moslang J. Nucl. Mater., 367 (2007), p. 286

[38] J.F. Ziegler; J.P. Biersack; U. Littmark The Stopping and Range of Ions in Solids (J.F. Ziegler, ed.), The Stopping and Range of Ions in Matter, vol. 1, Pergamon, New York, 1985 (p. 25ff)

[39] C. Domain; C.S. Becquart; J. Foct Phys. Rev. B, 69 (2004), p. 144112

[40] L. Joly, C.C. Fu, J.L. Bocquet, F. Willaime, A. Barbu, in preparation

[41] C.J. Först; J. Slycke; K.J. Van Vliet; S. Yip Phys. Rev. Lett., 96 (2006), p. 175501

[42] Group of Prof. B.D. Wirth, U.C. Berkeley

  • Zepeng Yin; Liping Guo; Yunxiang Long; Yiheng Chen; Ziyang Xie; Hongtai Luo; Wenbing Lin; Junjie Cao; Rui Yan; Silong Lin; Shuoxue Jin Superior radiation resistance of ODS-RAFM steels revealed by Positron annihilation spectroscopy study, Journal of Materials Research and Technology, Volume 30 (2024), p. 4366 | DOI:10.1016/j.jmrt.2024.04.163
  • Sizhe Diao; Qiang Liu; Yong Zhang; Farong Wan; Qian Zhan Effect of H+ pre-irradiation on irradiation hardening and microstructure evolution of FeCoCrNiAl0.3 alloy with He2+ irradiation, Materials Characterization, Volume 212 (2024), p. 113964 | DOI:10.1016/j.matchar.2024.113964
  • Myeongkyu Lee; Geon Kim; Sangjoon Ahn Swelling at high radiation damage levels of 120 and 240 dpa in 3.5 MeV self-ion irradiated ferritic/martensitic steels, Nuclear Engineering and Technology, Volume 56 (2024) no. 10, p. 4115 | DOI:10.1016/j.net.2024.05.014
  • Vinicius Oliveira Cavalcanti; Jérôme Roques; Aurélie Gentils; Denis Horlait; Eric Gilabert; Laurent Tassan-Got Understanding helium diffusion in iron: a multiscale modelling method based on the DFT and kinetic Monte Carlo, coupled to TEM and thermo-desorption spectroscopy experiments, Journal of Nuclear Materials, Volume 583 (2023), p. 154511 | DOI:10.1016/j.jnucmat.2023.154511
  • Lorenzo Malerba Large Scale Integrated Materials Modeling Programs, Comprehensive Nuclear Materials (2020), p. 881 | DOI:10.1016/b978-0-12-803581-8.11601-7
  • Marcelo Roldán; Patricia Galán; Fernando José Sánchez; Isabel García-Cortés; David Jiménez-Rey; Pilar Fernández Ion Beam Experiments to Emulate Nuclear Fusion Environment on Structural Materials at CMAM, Ion Beam Techniques and Applications (2020) | DOI:10.5772/intechopen.87054
  • Qingqing Wang; Xianggang Kong; You Yu; Huilei Han; Ge Sang; Guanghui Zhang; Yougen Yi; Tao Gao Effect of doping Ti on the vacancy trapping mechanism for helium in ZrCo from first principles, Physical Chemistry Chemical Physics, Volume 21 (2019) no. 37, p. 20909 | DOI:10.1039/c9cp04502c
  • Yongan Bai; Jingyi Shi; Lei Peng; Xuebang Wu; Liuliu Li First principles study on HenV clusters in α-Fe bulk and grain boundaries, Computational Materials Science, Volume 139 (2017), p. 419 | DOI:10.1016/j.commatsci.2017.07.035
  • C. Zheng; D. Kaoumi Radiation-induced swelling and radiation-induced segregation precipitation in dual beam irradiated Ferritic/Martensitic HT9 steel, Materials Characterization, Volume 134 (2017), p. 152 | DOI:10.1016/j.matchar.2017.10.019
  • S. Agarwal; P. Trocellier; D. Brimbal; S. Vaubaillon An experimental study of helium diffusion and helium induced microstructural evolution in ion implanted polycrystalline titanium nitride, Acta Materialia, Volume 121 (2016), p. 1 | DOI:10.1016/j.actamat.2016.08.062
  • Daniel Brimbal; Lionel Fournier; Alain Barbu Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels, Journal of Nuclear Materials, Volume 468 (2016), p. 124 | DOI:10.1016/j.jnucmat.2015.11.007
  • Weiping Zhang; Fengfeng Luo; Yanxia Yu; Zhongcheng Zheng; Zhenyu Shen; Liping Guo; Yaoyao Ren; Jinping Suo Synergistic effects on dislocation loops in reduced-activation martensitic steel investigated by single and sequential hydrogen/helium ion irradiation, Journal of Nuclear Materials, Volume 479 (2016), p. 302 | DOI:10.1016/j.jnucmat.2016.07.026
  • Dmitry Terentyev; Napoleón Anento; Anna Serra; C.J. Ortiz; E.E. Zhurkin Interaction of He and He–V clusters with self-interstitials and dislocations defects in bcc Fe, Journal of Nuclear Materials, Volume 458 (2015), p. 11 | DOI:10.1016/j.jnucmat.2014.10.093
  • P. Trocellier; S. Agarwal; S. Miro A review on helium mobility in inorganic materials, Journal of Nuclear Materials, Volume 445 (2014) no. 1-3, p. 128 | DOI:10.1016/j.jnucmat.2013.10.061
  • Daniel Brimbal; Estelle Meslin; Jean Henry; Brigitte Décamps; Alain Barbu He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe–5.40 wt. | DOI:10.1016/j.actamat.2013.04.070
  • T. Suzudo; T. Tsuru; M. Yamaguchi; H. Kaburaki An atomistic modeling of He bubble stability at grain boundaries in alpha-Fe, Journal of Nuclear Materials, Volume 442 (2013) no. 1-3, p. S655 | DOI:10.1016/j.jnucmat.2013.03.082
  • C.S. Becquart; B.D. Wirth Kinetic Monte Carlo Simulations of Irradiation Effects, Comprehensive Nuclear Materials (2012), p. 393 | DOI:10.1016/b978-0-08-056033-5.00030-6
  • C.S. Becquart; C. Domain Solute–point defect interactions in bcc systems: Focus on first principles modelling in W and RPV steels, Current Opinion in Solid State and Materials Science, Volume 16 (2012) no. 3, p. 115 | DOI:10.1016/j.cossms.2012.01.001
  • A. De Backer; P.E. Lhuillier; C.S. Becquart; M.F. Barthe Modelling of the implantation and the annealing stages of 800keV 3He implanted tungsten: Formation of nanovoids in the near surface region, Journal of Nuclear Materials, Volume 429 (2012) no. 1-3, p. 78 | DOI:10.1016/j.jnucmat.2012.05.024
  • D Duffy Modelling materials for fusion power, International Materials Reviews, Volume 56 (2011) no. 5-6, p. 324 | DOI:10.1179/1743280410y.0000000006
  • J. X. Yan; Z. X. Tian; W. Xiao; W. T. Geng Interaction of He with Cu, V, and Ta in bcc Fe: A first-principles study, Journal of Applied Physics, Volume 110 (2011) no. 1 | DOI:10.1063/1.3602156
  • H. Seto; N. Hashimoto; H. Kinoshita; S. Ohnuki Effects of multi-beam irradiation on defect formation in Fe–Cr alloys, Journal of Nuclear Materials, Volume 417 (2011) no. 1-3, p. 1018 | DOI:10.1016/j.jnucmat.2011.01.053
  • C. S. Becquart; C. Domain Modeling Microstructure and Irradiation Effects, Metallurgical and Materials Transactions A, Volume 42 (2011) no. 4, p. 852 | DOI:10.1007/s11661-010-0460-7
  • Enrique Martínez; Chu-Chun Fu Cr interactions with He and vacancies in dilute Fe-Cr alloys from first principles, Physical Review B, Volume 84 (2011) no. 1 | DOI:10.1103/physrevb.84.014203
  • L. Malerba Multi-scale modelling of irradiation effects in nuclear power plant materials, Understanding and Mitigating Ageing in Nuclear Power Plants (2010), p. 456 | DOI:10.1533/9781845699956.3.456
  • S.L. Dudarev; J.-L. Boutard; R. Lässer; M.J. Caturla; P.M. Derlet; M. Fivel; C.-C. Fu; M.Y. Lavrentiev; L. Malerba; M. Mrovec; D. Nguyen-Manh; K. Nordlund; M. Perlado; R. Schäublin; H. Van Swygenhoven; D. Terentyev; J. Wallenius; D. Weygand; F. Willaime The EU programme for modelling radiation effects in fusion reactor materials: An overview of recent advances and future goals, Journal of Nuclear Materials, Volume 386-388 (2009), p. 1 | DOI:10.1016/j.jnucmat.2008.12.301
  • Maria Samaras Multiscale Modelling: the role of helium in iron, Materials Today, Volume 12 (2009) no. 11, p. 46 | DOI:10.1016/s1369-7021(09)70298-6

Cité par 27 documents. Sources : Crossref

Commentaires - Politique