[Accumulation d' hélium et de défauts ponctuels : (ii) modélisation cinétique]
Les questions les plus importantes concernant la modélisation de la diffusion de l'hélium et de la formation de défauts dans le α-Fe sont passées en revue dans cet article. Pendant ces dernières années les calculs ab initio ont apporté une meilleure compréhension de la stabilité des défauts et de leur migration dans le fer pur, ainsi que des valeurs précises de l'énergie de migration de l'hélium et des interactions He-lacune. Ces données ont été utilisées par divers auteurs afin d'étudier l'évolution des défauts sous différentes conditions d'irradiation avec des modèles de type Monte Carlo et cinétique chimique. Dans cet article, nous discutons les principaux résultats obtenus, en particulier ceux sur la désorption de l'hélium. Nous discutons l'influence d'impuretés telles que le carbone ainsi que les plus importants défi pour la modélisation.
The main outstanding issues regarding modeling He diffusion and defect accumulation in α-iron are reviewed. During recent years, first principles calculations have provided a better understanding of defect stability and migration properties in pure α-iron, and accurate values of energetics of He migration and He-vacancy interactions. Such information has been used by several authors to study damage evolution under different irradiation conditions using both kinetic Monte Carlo and rate theory models. In this article a review of the main results is provided, in particular for He desorption. The influence of impurities such as carbon is discussed as well as the main challenges ahead for modeling.
Mots-clés : Modèles Monte Carlo cinétique, Calculs ab initio, Modèle de diffusion, Hélium, Fer, Défauts d'irradiation, Défauts
Maria José Caturla 1 ; Christophe J. Ortiz 1 ; Chu Chun Fu 2
@article{CRPHYS_2008__9_3-4_401_0, author = {Maria Jos\'e Caturla and Christophe J. Ortiz and Chu Chun Fu}, title = {Helium and point defect accumulation: (ii) kinetic modelling}, journal = {Comptes Rendus. Physique}, pages = {401--408}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2007.09.004}, language = {en}, }
TY - JOUR AU - Maria José Caturla AU - Christophe J. Ortiz AU - Chu Chun Fu TI - Helium and point defect accumulation: (ii) kinetic modelling JO - Comptes Rendus. Physique PY - 2008 SP - 401 EP - 408 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2007.09.004 LA - en ID - CRPHYS_2008__9_3-4_401_0 ER -
Maria José Caturla; Christophe J. Ortiz; Chu Chun Fu. Helium and point defect accumulation: (ii) kinetic modelling. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 401-408. doi : 10.1016/j.crhy.2007.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.004/
[1] J. Nucl. Mater., 4 (1959), p. 305
[2] J. Nucl. Mater., 329 (2004), p. 20
[3] F.A. Garner, Materials Science and Technology, vol. 10A, VCH, Germany, 1994 (Chapter 6)
[4] et al. Nucl. Fusion, 44 (2004), pp. 56-61
[5] C. R. Physique, 9 (2008) no. 3–4, p. 343
[6] Phys. Rev. B, 44 (1991), p. 4206
[7] J. Nucl. Mater., 323 (2003), p. 243
[8] Phys. Rev. B, 72 (2005), p. 064117
[9] Phys. Rev. Lett., 94 (2005), p. 046403
[10] C.R. Physique, 9 (2008) no. 3–4, p. 335
[11] J. Nucl. Mater., 323 (2003), p. 229
[12] H. Ullmaier, Numerical data and functional relationships in science and technology, Landolt–Börnstein New Series, vol. III/25, 1991, p. 381
[13] J. Nucl. Mater., 141–143 (1986), p. 633
[14] J. Nucl. Mater., 351 (2006), p. 119
[15] J. Nucl. Mater., 307–311 (2003), p. 941
[16] J. Nucl. Mater., 351 (2006), p. 109
[17] J. Nucl. Mater., 367 (2007), p. 244
[18] Phys. Rev. B, 69 (2004), p. 144112
[19] Nature Mat., 4 (2004), pp. 68-74
[20] Nucl. Instrum. Meth. B, 228 (2005), p. 92
[21] J. Nucl. Mater., 276 (2000), p. 1
[22] J. Nucl. Mater., 276 (2000), p. 33
[23] Phil. Mag. A, 81 (2001), p. 331
[24] J. Nucl. Mater., 166 (1989), p. 227
[25] Phys. Rev. Lett., 88 (2002), p. 255507
[26] Phys. Rev. Lett., 96 (2006), p. 125506
[27] Phil. Mag. A, 50 (1984), p. 45
[28] J. Nucl. Mater., 276 (2000), p. 13
[29] J. Nucl. Mater., 323 (2003), p. 169
[30] Phys. Rev. B, 65 (2001), p. 024103
[31] J. Nucl. Mater., 302 (2002), p. 143
[32] C. R. Physique, 9 (2008) no. 3–4, p. 353
[33] Nucl. Instrum. Meth. B, 255 (2007), p. 52
[34] Phys. Rev. B, 75 (2007), p. 100102
[35] J. Nucl. Mater., 362 (2007), p. 141
[36] J. Nucl. Mater., 362 (2007), pp. 161-166
[37] J. Nucl. Mater., 367 (2007), p. 286
[38] The Stopping and Range of Ions in Solids (J.F. Ziegler, ed.), The Stopping and Range of Ions in Matter, vol. 1, Pergamon, New York, 1985 (p. 25ff)
[39] Phys. Rev. B, 69 (2004), p. 144112
[40] L. Joly, C.C. Fu, J.L. Bocquet, F. Willaime, A. Barbu, in preparation
[41] Phys. Rev. Lett., 96 (2006), p. 175501
[42] Group of Prof. B.D. Wirth, U.C. Berkeley
- Superior radiation resistance of ODS-RAFM steels revealed by Positron annihilation spectroscopy study, Journal of Materials Research and Technology, Volume 30 (2024), p. 4366 | DOI:10.1016/j.jmrt.2024.04.163
- Effect of H+ pre-irradiation on irradiation hardening and microstructure evolution of FeCoCrNiAl0.3 alloy with He2+ irradiation, Materials Characterization, Volume 212 (2024), p. 113964 | DOI:10.1016/j.matchar.2024.113964
- Swelling at high radiation damage levels of 120 and 240 dpa in 3.5 MeV self-ion irradiated ferritic/martensitic steels, Nuclear Engineering and Technology, Volume 56 (2024) no. 10, p. 4115 | DOI:10.1016/j.net.2024.05.014
- Understanding helium diffusion in iron: a multiscale modelling method based on the DFT and kinetic Monte Carlo, coupled to TEM and thermo-desorption spectroscopy experiments, Journal of Nuclear Materials, Volume 583 (2023), p. 154511 | DOI:10.1016/j.jnucmat.2023.154511
- Large Scale Integrated Materials Modeling Programs, Comprehensive Nuclear Materials (2020), p. 881 | DOI:10.1016/b978-0-12-803581-8.11601-7
- Ion Beam Experiments to Emulate Nuclear Fusion Environment on Structural Materials at CMAM, Ion Beam Techniques and Applications (2020) | DOI:10.5772/intechopen.87054
- Effect of doping Ti on the vacancy trapping mechanism for helium in ZrCo from first principles, Physical Chemistry Chemical Physics, Volume 21 (2019) no. 37, p. 20909 | DOI:10.1039/c9cp04502c
- First principles study on HenV clusters in α-Fe bulk and grain boundaries, Computational Materials Science, Volume 139 (2017), p. 419 | DOI:10.1016/j.commatsci.2017.07.035
- Radiation-induced swelling and radiation-induced segregation precipitation in dual beam irradiated Ferritic/Martensitic HT9 steel, Materials Characterization, Volume 134 (2017), p. 152 | DOI:10.1016/j.matchar.2017.10.019
- An experimental study of helium diffusion and helium induced microstructural evolution in ion implanted polycrystalline titanium nitride, Acta Materialia, Volume 121 (2016), p. 1 | DOI:10.1016/j.actamat.2016.08.062
- Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels, Journal of Nuclear Materials, Volume 468 (2016), p. 124 | DOI:10.1016/j.jnucmat.2015.11.007
- Synergistic effects on dislocation loops in reduced-activation martensitic steel investigated by single and sequential hydrogen/helium ion irradiation, Journal of Nuclear Materials, Volume 479 (2016), p. 302 | DOI:10.1016/j.jnucmat.2016.07.026
- Interaction of He and He–V clusters with self-interstitials and dislocations defects in bcc Fe, Journal of Nuclear Materials, Volume 458 (2015), p. 11 | DOI:10.1016/j.jnucmat.2014.10.093
- A review on helium mobility in inorganic materials, Journal of Nuclear Materials, Volume 445 (2014) no. 1-3, p. 128 | DOI:10.1016/j.jnucmat.2013.10.061
- He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe–5.40 wt. | DOI:10.1016/j.actamat.2013.04.070
- An atomistic modeling of He bubble stability at grain boundaries in alpha-Fe, Journal of Nuclear Materials, Volume 442 (2013) no. 1-3, p. S655 | DOI:10.1016/j.jnucmat.2013.03.082
- Kinetic Monte Carlo Simulations of Irradiation Effects, Comprehensive Nuclear Materials (2012), p. 393 | DOI:10.1016/b978-0-08-056033-5.00030-6
- Solute–point defect interactions in bcc systems: Focus on first principles modelling in W and RPV steels, Current Opinion in Solid State and Materials Science, Volume 16 (2012) no. 3, p. 115 | DOI:10.1016/j.cossms.2012.01.001
- Modelling of the implantation and the annealing stages of 800keV 3He implanted tungsten: Formation of nanovoids in the near surface region, Journal of Nuclear Materials, Volume 429 (2012) no. 1-3, p. 78 | DOI:10.1016/j.jnucmat.2012.05.024
- Modelling materials for fusion power, International Materials Reviews, Volume 56 (2011) no. 5-6, p. 324 | DOI:10.1179/1743280410y.0000000006
- Interaction of He with Cu, V, and Ta in bcc Fe: A first-principles study, Journal of Applied Physics, Volume 110 (2011) no. 1 | DOI:10.1063/1.3602156
- Effects of multi-beam irradiation on defect formation in Fe–Cr alloys, Journal of Nuclear Materials, Volume 417 (2011) no. 1-3, p. 1018 | DOI:10.1016/j.jnucmat.2011.01.053
- Modeling Microstructure and Irradiation Effects, Metallurgical and Materials Transactions A, Volume 42 (2011) no. 4, p. 852 | DOI:10.1007/s11661-010-0460-7
- Cr interactions with He and vacancies in dilute Fe-Cr alloys from first principles, Physical Review B, Volume 84 (2011) no. 1 | DOI:10.1103/physrevb.84.014203
- Multi-scale modelling of irradiation effects in nuclear power plant materials, Understanding and Mitigating Ageing in Nuclear Power Plants (2010), p. 456 | DOI:10.1533/9781845699956.3.456
- The EU programme for modelling radiation effects in fusion reactor materials: An overview of recent advances and future goals, Journal of Nuclear Materials, Volume 386-388 (2009), p. 1 | DOI:10.1016/j.jnucmat.2008.12.301
- Multiscale Modelling: the role of helium in iron, Materials Today, Volume 12 (2009) no. 11, p. 46 | DOI:10.1016/s1369-7021(09)70298-6
Cité par 27 documents. Sources : Crossref
Commentaires - Politique