[He et accumulation de défauts ponctuels : (i) microstructure et comportement mécanique]
Les aciers ferritiques/martensitiques sont de bons candidats pour les matériaux de structure des futurs réacteurs à fusion et des sources de spallation. Cependant, l'irradiation d'aciers conduit au durcissement, à la perte de ductilité, à la dérive de la température de transition fragile-ductile et à une réduction de ténacité et de résistance au gonflement, et ce, dès les doses les plus faibles. L'hélium (He), produit par transmutation durant l'irradiation, influence ces propriétés. De nombreuses études expérimentales et théoriques sur l'évolution de la microstructure des aciers sous irradiation ont été conduites jusqu'à présent. Nous passons en revue l'effet des dégâts d'irradiation, en particulier de l'He, sur les propriétés mécaniques des aciers ferritiques/martensitiques.
Ferritic/martensitic (F/M) steels are good candidate structural materials for the future fusion reactors and spallation sources. However, irradiation of steels is known to produce hardening, loss of ductility, shift in ductile to brittle transition temperature (DBTT) and reduction of fracture toughness and creep resistance starting at low doses. Helium (He), produced by transmutation during the irradiation, also impacts mechanical properties. Numerous experimental and theoretical studies on the evolution of the microstructure of steels under irradiation have been conducted until now. We review the effect of irradiation-induced point defects and in particular of He on the mechanical properties of F/M steels.
Mots-clés : Acier, Plasticité, Microstructure, Dégâts d'irradiation, Helium
Robin Schäublin 1 ; Jean Henry 2 ; Yong Dai 3
@article{CRPHYS_2008__9_3-4_389_0, author = {Robin Sch\"aublin and Jean Henry and Yong Dai}, title = {Helium and point defect accumulation: (i) microstructure and mechanical behaviour}, journal = {Comptes Rendus. Physique}, pages = {389--400}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2008.01.003}, language = {en}, }
TY - JOUR AU - Robin Schäublin AU - Jean Henry AU - Yong Dai TI - Helium and point defect accumulation: (i) microstructure and mechanical behaviour JO - Comptes Rendus. Physique PY - 2008 SP - 389 EP - 400 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2008.01.003 LA - en ID - CRPHYS_2008__9_3-4_389_0 ER -
Robin Schäublin; Jean Henry; Yong Dai. Helium and point defect accumulation: (i) microstructure and mechanical behaviour. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 389-400. doi : 10.1016/j.crhy.2008.01.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.01.003/
[1] Nuclear Fusion, 44 (2004), pp. 56-61
[2] Nuclear Fusion, 45 (2005), pp. 649-655
[3] Fusion Engineering and Design, 51 (2000) no. 2, pp. 55-71
[4] M.S. Wechsler, D.R. Davidson, L.R. Greenwood, W.F. Sommer, Effects of Radiation on Materials: 12th conference, ASTM, 1985
[5] La sagesse du physicien, L'oeil neuf, Paris, 2005, p. 34
[6] Journal of Nuclear Materials, 179–181 (1991), pp. 118-124
[7] Journal of Nuclear Materials, 237 (1996), pp. 138-147
[8] Journal of Nuclear Materials, 283 (2000), pp. 838-840
[9] Journal of Nuclear Materials, 191 (1992), pp. 905-909
[10] Journal of Nuclear Materials, 272 (1999), pp. 385-390
[11] Journal of Nuclear Materials, 357 (2006), pp. 169-182
[12] Journal of Nuclear Materials, 283 (2000), pp. 474-477
[13] Fusion Engineering and Design, 81 (2006), pp. 917-923
[14] Journal of Nuclear Materials, 143 (1986), pp. 633-646
[15] Journal of Nuclear Materials, 323 (2003), pp. 251-262
[16] Journal of Nuclear Materials, 318 (2003), pp. 241-248
[17] Journal of Nuclear Materials, 318 (2003), pp. 274-282
[18] Journal De Physique IV, 12 (2002), pp. 3-26
[19] Journal of Nuclear Materials, 318 (2003), pp. 167-175
[20] Nuclear Instruments & Methods in Physics Research Section A – Accelerators Spectrometers Detectors and Associated Equipment, 562 (2006), pp. 541-547
[21] Journal of Nuclear Materials, 143 (1986), pp. 1011-1017
[22] Journal of Nuclear Materials, 283 (2000), pp. 339-343
[23] Microscopy Research and Technique, 69 (2006), pp. 305-316
[24] Philosophical Magazine A, 38 (1978), pp. 97-114
[25] A.C. Nicol, M.L. Jenkins, M.A. Kirk, Matrix damage in iron, in: Materials Research Society Symposium – Proceedings, 2001
[26] R. Schaeublin, M. Victoria, Identification of defects in ferritic/martensitic steels induced by low dose irradiation, in: Microstructural Processes in Irradiated Materials, Materials Research Society, Boston, 2001
[27] Journal of Nuclear Materials, 307 (2002), pp. 197-202
[28] Journal of Physics F – Metal Physics, 10 (1980), pp. 1065-1080
[29] Journal of Nuclear Materials, 87 (1979), pp. 11-24
[30] Journal of Nuclear Materials, 108 (1982), pp. 515-526
[31] Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing, 309 (2001), pp. 82-86
[32] Proceedings of the Royal Society A, 305 (1967), pp. 541-552
[33] Journal of Nuclear Materials, 356 (2006), pp. 105-111
[34] Journal of Nuclear Materials, 305 (2002), pp. 1-7
[35] Journal of Nuclear Materials, 318 (2003), pp. 207-214
[36] N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, M. Victoria, A comparison of the microstructure and tensile behaviour of irradiated fcc and bcc metals, in: Microstructural Processes in Irradiated Materials, Materials Research Society, 1999
[37] Journal of Nuclear Materials, 226 (1995), pp. 277-285
[38] Nuclear Instruments & Methods in Physics Research Section B – Beam Interactions with Materials and Atoms, 102 (1995), pp. 37-46
[39] Radiation Effects and Defects in Solids, 148 (1999), pp. 95-126
[40] Journal of Nuclear Materials, 276 (2000), pp. 13-21
[41] Journal of Nuclear Materials, 217 (1994), pp. 161-171
[42] Journal of Nuclear Materials, 272 (1999), pp. 540-552
[43] Journal of Nuclear Materials, 323 (2003), pp. 388-393
[44] Journal of Nuclear Materials, 216 (1994), pp. 220-264
[45] Journal of Nuclear Materials, 69 (1978) no. 7, pp. 331-340
[46] High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM, West Conshohocken, PA, 2001
[47] Journal of Nuclear Materials, 321 (2003), pp. 84-90
[48] Transactions of the American Institute of Mining and Metallurgical Engineers, 197 (1953), pp. 690-695
[49] Transactions of the American Institute of Mining and Metallurgical Engineers, 212 (1958), pp. 422-423
[50] Journal of Nuclear Materials, 54 (1974), pp. 24-40
[51] Journal of Nuclear Materials, 276 (2000), pp. 123-142
[52] Journal of Nuclear Materials, 87 (1979), pp. 25-39
[53] Journal of Nuclear Materials, 329 (2004) no. 33, pp. 1008-1012
[54] Journal of Nuclear Materials, 61 (1976), pp. 41-52
[55] Metallurgical Transactions A – Physical Metallurgy and Materials Science, 21 (1990), pp. 1037-1051
[56] Philosophical Magazine A – Physics of Condensed Matter Structure Defects and Mechanical Properties, 55 (1987), pp. 127-140
[57] Philosophical Magazine A – Physics of Condensed Matter Structure Defects and Mechanical Properties, 55 (1987), pp. 111-125
[58] Journal of Nuclear Materials, 141–143 (1986), pp. 929-937
[59] Journal of Nuclear Materials, 283–287 (2000), pp. 799-805
[60] Journal of Nuclear Materials, 343 (2005), pp. 212-218
[61] Acta Materialia, 34 (1986), p. 1771
[62] Journal of Nuclear Materials, 318 (2003), pp. 215-227
[63] K. Farrell, E. Lee, Ion bombardment damage in a modified Fe–9Cr–1Mo steel, in: Effects of Radiations on Materials: 12th International Conference, ASTM, 1985
[64] Journal of Nuclear Materials, 155 (1988), pp. 1268-1273
[65] N. Wanderka, E. Camus, H. Wollenberger, Microstructure evolution of selected ferritic-martensitic steels under dual-beam irradiation, in: Microstructure Evolution During Irradiation, MRS, 1996
[66] Journal of Nuclear Materials, 155 (1988), pp. 1064-1068
[67] Journal of Nuclear Materials, 318 (2003), pp. 249-259
[68] Journal of Nuclear Materials, 179 (1991), pp. 118-124
[69] Journal of Applied Physics, 100 (2006)
[70] Acta Metallurgica Et Materialia, 38 (1990), pp. 2383-2392
[71] Radiation Effects and Defects in Solids, 78 (1983), pp. 315-325
[72] Philosophical Magazine A – Physics of Condensed Matter Structure Defects and Mechanical Properties, 80 (2000), pp. 1507-1543
[73] Journal of Nuclear Materials (2007)
[74] Radiation Effects and Defects in Solids, 78 (1983), pp. 189-211
[75] Journal of Nuclear Materials, 179–181 (1991), p. 162
[76] Journal of Nuclear Materials, 210 (1994), pp. 290-302
[77] Journal of Nuclear Materials, 182 (1991), pp. 230-239
[78] Journal of Nuclear Materials, 329 (2004) no. 33, pp. 1078-1082
[79] Journal of Nuclear Materials, 329 (2004) no. 33, pp. 1113-1116
[80] Materials Science Forum, 97–99 (1992), pp. 451-472
[81] Journal of Nuclear Materials, 323 (2003), pp. 229-242
[82] Journal of Nuclear Materials, 356 (2006), pp. 27-49
[83] Journal of Nuclear Materials, 283–287 (2000), pp. 513-517
[84] Journal of Nuclear Materials, 296 (2001), pp. 119-128
[85] Journal of Nuclear Materials, 318 (2003), pp. 192-199
[86] Journal of Nuclear Materials, 343 (2005), pp. 247-252
[87] Journal of Nuclear Materials (2007)
[88] Journal De Physique IV, 12 (2002), pp. 103-120
[89] Scripta Materialia, 43 (2000), pp. 957-961
[90] C.C. Fu, Annual report of the association EURATOM-CEA, 2006
[91] J. Henry, X. Averty, Y. Dai, J.P. Pizzanelli, Journal of Nuclear Materials, | DOI
[92] Journal of Nuclear Materials, 356 (2006), pp. 78-87
[93] Journal of Nuclear Materials, 367 (2007), pp. 411-416
[94] J. Malaparte, L. Vincent, X. Averty, J. Henry, B. Marini, Engineering and Fracture Mechanics, | DOI
[95] Nuclear Instruments & Methods in Physics Research Section B – Beam Interactions with Materials and Atoms, 228 (2005), pp. 92-99
[96] Physical Review B, 73 (2006)
[97] Philosophical Magazine, 12 (1965), p. 31
[98] Physical Review Letters, 88 (2002)
[99] Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 180 (2001), pp. 187-193
[100] Journal of Nuclear Materials, 258–263 (1998), pp. 1414-1419
[101] Nuclear Engineering and Design, 33 (1975), pp. 50-54
[102] Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 102 (1995), pp. 37-46
[103] Journal of Nuclear Materials, 351 (2006), pp. 28-38
[104] Philosophical Magazine, 85 (2005), pp. 737-743
[105] Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 180 (2001), pp. 85-90
[106] Journal of Nuclear Materials, 351 (2006), pp. 39-46
[107] Journal of Nuclear Materials, 351 (2006), pp. 65-77
[108] Journal of Nuclear Materials, 367–370 (2007) no. 1, pp. 298-304
[109] Physical Review Letters, 95 (2005), p. 075702
[110] Physical Review B, 72 (2005), p. 214119
[111] Journal of Nuclear Materials, 349 (2006), pp. 119-132
[112] Radiation Effects and Defects in Solids, 126 (1993), pp. 185-188
[113] Ultramicroscopy, 83 (2000), pp. 179-191
[114] Journal of Nuclear Materials, 367–370 (2007) no. 1, pp. 462-467
[115] Applied Physics Letters, 88 (2006), p. 91915
[116] Nuclear Fusion, 47 (2007), pp. 1690-1695
[117] S.M. Hafez Haghighat, J. Fikar, R. Schaeublin, Journal of Nuclear Materials (2008), in press
[118] Philosophical Magazine, 84 (2004), pp. 415-428
[119] Journal of Nuclear Materials, 362 (2007), pp. 152-160
[120] Journal of Nuclear Materials, 323 (2003), pp. 268-280
[121] Materials Science and Engineering A, 400–401 (2005), pp. 374-377
[122] Scientific Modeling and Simulation, 14 (2007), pp. 191-201
[123] S.M. Hafez Haghighat, R. Schaeublin, Molecular dynamics modeling of cavity strengthening in irradiated iron, in: Proceedings of Multiscale Materials Modeling, Freiburg, 2006
[124] Philosophical Magazine, 34 (1976), pp. 129-141
[125] Radiation Effects and Defects in Solids, 21 (1974), pp. 161-164
[126] Physical Review B, 72 (2005), p. 064117
[127] Physical Review B, 24 (1981), pp. 5616-5624
- In-situ study of defect evolution and calculation of defect migration energy of FeCoCrNiAl0.3 high-entropy alloy under high-energy electron irradiation, Acta Physica Sinica, Volume 74 (2025) no. 7, p. 076103 | DOI:10.7498/aps.74.20241481
- Effect of thermal oxidation on helium implanted pure iron, Journal of Nuclear Materials, Volume 603 (2025), p. 155377 | DOI:10.1016/j.jnucmat.2024.155377
- Microstructure evolution of He-implanted high entropy alloy multilayers at elevated temperature, Materials Characterization, Volume 222 (2025), p. 114813 | DOI:10.1016/j.matchar.2025.114813
- Tiny Bubbles: Measuring Strain Fields and Missing Atoms in Nanoscale He Bubbles via High-Resolution STEM Techniques, Microscopy and Microanalysis, Volume 30 (2024) no. Supplement_1 | DOI:10.1093/mam/ozae044.879
- A comprehensive atomistic investigation on the cascade induced helium bubble motion in bcc iron for neutron irradiated RAFM steels, Journal of Nuclear Materials, Volume 578 (2023), p. 154373 | DOI:10.1016/j.jnucmat.2023.154373
- Evolution of dislocation loops and effect of annealing temperature on hydrogen-ion-implanted Fe-based binary alloys, Acta Physica Sinica, Volume 71 (2022) no. 13, p. 136101 | DOI:10.7498/aps.71.20220137
- Thermally Decomposed Binary Fe–Cr Alloys: Toward a Quantitative Relationship Between Strength and Structure, Advanced Engineering Materials, Volume 24 (2022) no. 3 | DOI:10.1002/adem.202100909
- Effect of helium and its synergism with displacement damage on microstructure of CLAM steel investigated by single, sequential and simultaneous Fe and He ion irradiations, Journal of Nuclear Materials, Volume 568 (2022), p. 153872 | DOI:10.1016/j.jnucmat.2022.153872
- The effect of helium on cavity swelling in dual-ion irradiated Fe and Fe-10Cr ferritic alloys, Journal of Nuclear Materials, Volume 569 (2022), p. 153907 | DOI:10.1016/j.jnucmat.2022.153907
- Irradiation damage concurrent challenges with RAFM and ODS steels for fusion reactor first-wall/blanket: a review, Journal of Physics: Energy, Volume 4 (2022) no. 3, p. 034003 | DOI:10.1088/2515-7655/ac6f7f
- Effect of Mn addition on the formation of vacancy-type dislocation loops in α-Fe, Materials Characterization, Volume 185 (2022), p. 111755 | DOI:10.1016/j.matchar.2022.111755
- Lattice Strain and Defects Analysis in Nanostructured Semiconductor Materials and Devices by High‐Resolution X‐Ray Diffraction: Theoretical and Practical Aspects, Small Methods, Volume 6 (2022) no. 2 | DOI:10.1002/smtd.202100932
- Large helium-vacancy clusters coalescence during helium bubble evolution under cascade in iron with edge dislocation: A MD simulation, Computational Materials Science, Volume 197 (2021), p. 110601 | DOI:10.1016/j.commatsci.2021.110601
- Mechanisms of plastic deformation and fracture of austenitic chromium-nickel steel irradiated during 45 years in WWER-440, Journal of Nuclear Materials, Volume 549 (2021), p. 152911 | DOI:10.1016/j.jnucmat.2021.152911
- Effect of He content on the evolution of He bubbles and He thermal desorption behaviors in FeCr based nanocrystalline film, Journal of Nuclear Materials, Volume 555 (2021), p. 153136 | DOI:10.1016/j.jnucmat.2021.153136
- Investigation of irradiated metal of WWER-type reactor internals after 45 years of operation. Part 4. Mechanical properties and fracture mechanisms, Voprosy Materialovedeniya (2021) no. 1(105), p. 116 | DOI:10.22349/1994-6716-2021-105-1-116-144
- Nano-scale microstructure damage by neutron irradiations in a novel Boron-11 enriched TiB2 ultra-high temperature ceramic, Acta Materialia, Volume 165 (2019), p. 26 | DOI:10.1016/j.actamat.2018.11.030
- Formation of Vacancy-Type Dislocation Loops in Hydrogen-Ion-Implanted Fe–Cr Alloy, Acta Metallurgica Sinica (English Letters), Volume 32 (2019) no. 5, p. 566 | DOI:10.1007/s40195-018-0807-4
- An approach in the analysis of microstructure of proton irradiated T91 through XRDLPA using synchrotron and laboratory source, Journal of Nuclear Materials, Volume 514 (2019), p. 161 | DOI:10.1016/j.jnucmat.2018.11.038
- Ferritic-martensitic steels for fission and fusion applications, Journal of Nuclear Materials, Volume 523 (2019), p. 510 | DOI:10.1016/j.jnucmat.2019.05.058
- Helium desorption behavior and growth mechanism of helium bubbles in FeCrNi film, Nuclear Materials and Energy, Volume 21 (2019), p. 100710 | DOI:10.1016/j.nme.2019.100710
- Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron, Materials Research Letters, Volume 6 (2018) no. 7, p. 372 | DOI:10.1080/21663831.2018.1462266
- On the origin of primary ½ a0 <111> and a0 <100> loops in irradiated Fe(Cr) alloys, Acta Materialia, Volume 133 (2017), p. 427 | DOI:10.1016/j.actamat.2017.02.041
- First principles study on HenV clusters in α-Fe bulk and grain boundaries, Computational Materials Science, Volume 139 (2017), p. 419 | DOI:10.1016/j.commatsci.2017.07.035
- Impact of neutron irradiation on thermal helium desorption from iron, Journal of Nuclear Materials, Volume 489 (2017), p. 109 | DOI:10.1016/j.jnucmat.2017.03.034
- Defect evolution in heavy ion irradiated nanotwinned Cu with nanovoids, Journal of Nuclear Materials, Volume 496 (2017), p. 293 | DOI:10.1016/j.jnucmat.2017.09.031
- Irradiation-resistant ferritic and martensitic steels as core materials for Generation IV nuclear reactors, Structural Materials for Generation IV Nuclear Reactors (2017), p. 329 | DOI:10.1016/b978-0-08-100906-2.00009-4
- First-principles study of He trapping in η -Fe 2 C, Chinese Physics B, Volume 25 (2016) no. 11, p. 116801 | DOI:10.1088/1674-1056/25/11/116801
- A GPU-based parallel Object kinetic Monte Carlo algorithm for the evolution of defects in irradiated materials, Computational Materials Science, Volume 113 (2016), p. 178 | DOI:10.1016/j.commatsci.2015.11.011
- Defect structures of F82H irradiated at SINQ using positron annihilation spectroscopy, Journal of Nuclear Materials, Volume 468 (2016), p. 281 | DOI:10.1016/j.jnucmat.2015.03.055
- Investigation of the thermo-mechanical behavior of neutron-irradiated Fe-Cr alloys by self-consistent plasticity theory, Journal of Nuclear Materials, Volume 477 (2016), p. 123 | DOI:10.1016/j.jnucmat.2016.05.012
- Surface-induced vacancy loops and damage dispersion in irradiated Fe thin films, Acta Materialia, Volume 101 (2015), p. 22 | DOI:10.1016/j.actamat.2015.08.063
- Single- and dual-beam in situ irradiations of high-purity iron in a transmission electron microscope: Effects of heavy ion irradiation and helium injection, Acta Materialia, Volume 64 (2014), p. 391 | DOI:10.1016/j.actamat.2013.10.052
- Application of Raman spectroscopy to the study of hydrogen in an ion irradiated oxide-dispersion strengthened Fe–12Cr steel, Journal of Nuclear Materials, Volume 447 (2014) no. 1-3, p. 179 | DOI:10.1016/j.jnucmat.2014.01.019
- He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe–5.40 wt. | DOI:10.1016/j.actamat.2013.04.070
- Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys, Acta Materialia, Volume 61 (2013) no. 18, p. 6958 | DOI:10.1016/j.actamat.2013.08.007
- The Evolution of Deuterium Bubbles in Iron under Electron Irradiation, Advanced Materials Research, Volume 652-654 (2013), p. 1002 | DOI:10.4028/www.scientific.net/amr.652-654.1002
- Vacancy-type defect production in CLAM steel after the co-implantation of He and H ion beams studied by positron-annihilation spectroscopy, Journal of Nuclear Materials, Volume 432 (2013) no. 1-3, p. 120 | DOI:10.1016/j.jnucmat.2012.08.043
- Effect of grain microstructure on thermal helium desorption from pure iron, Journal of Nuclear Materials, Volume 434 (2013) no. 1-3, p. 152 | DOI:10.1016/j.jnucmat.2012.11.025
- Comparison between bulk and thin foil ion irradiation of ultra high purity Fe, Journal of Nuclear Materials, Volume 442 (2013) no. 1-3, p. S786 | DOI:10.1016/j.jnucmat.2013.04.032
- Accumulation and transport of hydrogen in RUSFER-EK-181 ferritic-martensitic steel, Technical Physics, Volume 58 (2013) no. 6, p. 814 | DOI:10.1134/s1063784213060108
- Particle stability in model ODS steel irradiated up to 100dpa at 600°C: TEM and nano-indentation investigation, Journal of Nuclear Materials, Volume 426 (2012) no. 1-3, p. 240 | DOI:10.1016/j.jnucmat.2012.04.001
- Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy, Journal of Nuclear Materials, Volume 427 (2012) no. 1-3, p. 133 | DOI:10.1016/j.jnucmat.2012.04.029
- Modelling materials for fusion power, International Materials Reviews, Volume 56 (2011) no. 5-6, p. 324 | DOI:10.1179/1743280410y.0000000006
- Plastic deformation of ferritic grains in presence of ODS particles and irradiation-induced defect clusters: A 3D dislocation dynamics simulation study, Journal of Nuclear Materials, Volume 415 (2011) no. 2, p. 167 | DOI:10.1016/j.jnucmat.2011.05.049
- Characterization of radiation induced defects in EUROFER 97 after neutron irradiation, Journal of Nuclear Materials, Volume 417 (2011) no. 1-3, p. 124 | DOI:10.1016/j.jnucmat.2010.12.261
- Cr interactions with He and vacancies in dilute Fe-Cr alloys from first principles, Physical Review B, Volume 84 (2011) no. 1 | DOI:10.1103/physrevb.84.014203
- Strengthening due to Cr-rich precipitates in Fe–Cr alloys: Effect of temperature and precipitate composition, Journal of Applied Physics, Volume 107 (2010) no. 6 | DOI:10.1063/1.3340522
- Binary effect of He and H on the intra- and inter-granular embrittlement in Fe, Journal of Nuclear Materials, Volume 407 (2010) no. 3, p. 200 | DOI:10.1016/j.jnucmat.2010.10.016
- Modifications of Alloying Elements in Martensitic 8-10 | DOI:10.4028/www.scientific.net/msf.636-637.631
- State of a pressurized helium bubble in iron, EPL (Europhysics Letters), Volume 85 (2009) no. 6, p. 60008 | DOI:10.1209/0295-5075/85/60008
- Atomistic simulation of He bubble in Fe as obstacle to dislocation, IOP Conference Series: Materials Science and Engineering, Volume 3 (2009), p. 012013 | DOI:10.1088/1757-899x/3/1/012013
- Multiscale Modelling: the role of helium in iron, Materials Today, Volume 12 (2009) no. 11, p. 46 | DOI:10.1016/s1369-7021(09)70298-6
- Molecular dynamics simulations of collision cascades in FeCrHe, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 267 (2009) no. 20, p. 3420 | DOI:10.1016/j.nimb.2009.07.012
Cité par 54 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier