[He et accumulation de défauts ponctuels : (i) microstructure et comportement mécanique]
Les aciers ferritiques/martensitiques sont de bons candidats pour les matériaux de structure des futurs réacteurs à fusion et des sources de spallation. Cependant, l'irradiation d'aciers conduit au durcissement, à la perte de ductilité, à la dérive de la température de transition fragile-ductile et à une réduction de ténacité et de résistance au gonflement, et ce, dès les doses les plus faibles. L'hélium (He), produit par transmutation durant l'irradiation, influence ces propriétés. De nombreuses études expérimentales et théoriques sur l'évolution de la microstructure des aciers sous irradiation ont été conduites jusqu'à présent. Nous passons en revue l'effet des dégâts d'irradiation, en particulier de l'He, sur les propriétés mécaniques des aciers ferritiques/martensitiques.
Ferritic/martensitic (F/M) steels are good candidate structural materials for the future fusion reactors and spallation sources. However, irradiation of steels is known to produce hardening, loss of ductility, shift in ductile to brittle transition temperature (DBTT) and reduction of fracture toughness and creep resistance starting at low doses. Helium (He), produced by transmutation during the irradiation, also impacts mechanical properties. Numerous experimental and theoretical studies on the evolution of the microstructure of steels under irradiation have been conducted until now. We review the effect of irradiation-induced point defects and in particular of He on the mechanical properties of F/M steels.
Mot clés : Acier, Plasticité, Microstructure, Dégâts d'irradiation, Helium
Robin Schäublin 1 ; Jean Henry 2 ; Yong Dai 3
@article{CRPHYS_2008__9_3-4_389_0, author = {Robin Sch\"aublin and Jean Henry and Yong Dai}, title = {Helium and point defect accumulation: (i) microstructure and mechanical behaviour}, journal = {Comptes Rendus. Physique}, pages = {389--400}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2008.01.003}, language = {en}, }
TY - JOUR AU - Robin Schäublin AU - Jean Henry AU - Yong Dai TI - Helium and point defect accumulation: (i) microstructure and mechanical behaviour JO - Comptes Rendus. Physique PY - 2008 SP - 389 EP - 400 VL - 9 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2008.01.003 LA - en ID - CRPHYS_2008__9_3-4_389_0 ER -
Robin Schäublin; Jean Henry; Yong Dai. Helium and point defect accumulation: (i) microstructure and mechanical behaviour. Comptes Rendus. Physique, Volume 9 (2008) no. 3-4, pp. 389-400. doi : 10.1016/j.crhy.2008.01.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.01.003/
[1] Nuclear Fusion, 44 (2004), pp. 56-61
[2] Nuclear Fusion, 45 (2005), pp. 649-655
[3] Fusion Engineering and Design, 51 (2000) no. 2, pp. 55-71
[4] M.S. Wechsler, D.R. Davidson, L.R. Greenwood, W.F. Sommer, Effects of Radiation on Materials: 12th conference, ASTM, 1985
[5] La sagesse du physicien, L'oeil neuf, Paris, 2005, p. 34
[6] Journal of Nuclear Materials, 179–181 (1991), pp. 118-124
[7] Journal of Nuclear Materials, 237 (1996), pp. 138-147
[8] Journal of Nuclear Materials, 283 (2000), pp. 838-840
[9] Journal of Nuclear Materials, 191 (1992), pp. 905-909
[10] Journal of Nuclear Materials, 272 (1999), pp. 385-390
[11] Journal of Nuclear Materials, 357 (2006), pp. 169-182
[12] Journal of Nuclear Materials, 283 (2000), pp. 474-477
[13] Fusion Engineering and Design, 81 (2006), pp. 917-923
[14] Journal of Nuclear Materials, 143 (1986), pp. 633-646
[15] Journal of Nuclear Materials, 323 (2003), pp. 251-262
[16] Journal of Nuclear Materials, 318 (2003), pp. 241-248
[17] Journal of Nuclear Materials, 318 (2003), pp. 274-282
[18] Journal De Physique IV, 12 (2002), pp. 3-26
[19] Journal of Nuclear Materials, 318 (2003), pp. 167-175
[20] Nuclear Instruments & Methods in Physics Research Section A – Accelerators Spectrometers Detectors and Associated Equipment, 562 (2006), pp. 541-547
[21] Journal of Nuclear Materials, 143 (1986), pp. 1011-1017
[22] Journal of Nuclear Materials, 283 (2000), pp. 339-343
[23] Microscopy Research and Technique, 69 (2006), pp. 305-316
[24] Philosophical Magazine A, 38 (1978), pp. 97-114
[25] A.C. Nicol, M.L. Jenkins, M.A. Kirk, Matrix damage in iron, in: Materials Research Society Symposium – Proceedings, 2001
[26] R. Schaeublin, M. Victoria, Identification of defects in ferritic/martensitic steels induced by low dose irradiation, in: Microstructural Processes in Irradiated Materials, Materials Research Society, Boston, 2001
[27] Journal of Nuclear Materials, 307 (2002), pp. 197-202
[28] Journal of Physics F – Metal Physics, 10 (1980), pp. 1065-1080
[29] Journal of Nuclear Materials, 87 (1979), pp. 11-24
[30] Journal of Nuclear Materials, 108 (1982), pp. 515-526
[31] Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing, 309 (2001), pp. 82-86
[32] Proceedings of the Royal Society A, 305 (1967), pp. 541-552
[33] Journal of Nuclear Materials, 356 (2006), pp. 105-111
[34] Journal of Nuclear Materials, 305 (2002), pp. 1-7
[35] Journal of Nuclear Materials, 318 (2003), pp. 207-214
[36] N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, M. Victoria, A comparison of the microstructure and tensile behaviour of irradiated fcc and bcc metals, in: Microstructural Processes in Irradiated Materials, Materials Research Society, 1999
[37] Journal of Nuclear Materials, 226 (1995), pp. 277-285
[38] Nuclear Instruments & Methods in Physics Research Section B – Beam Interactions with Materials and Atoms, 102 (1995), pp. 37-46
[39] Radiation Effects and Defects in Solids, 148 (1999), pp. 95-126
[40] Journal of Nuclear Materials, 276 (2000), pp. 13-21
[41] Journal of Nuclear Materials, 217 (1994), pp. 161-171
[42] Journal of Nuclear Materials, 272 (1999), pp. 540-552
[43] Journal of Nuclear Materials, 323 (2003), pp. 388-393
[44] Journal of Nuclear Materials, 216 (1994), pp. 220-264
[45] Journal of Nuclear Materials, 69 (1978) no. 7, pp. 331-340
[46] High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM, West Conshohocken, PA, 2001
[47] Journal of Nuclear Materials, 321 (2003), pp. 84-90
[48] Transactions of the American Institute of Mining and Metallurgical Engineers, 197 (1953), pp. 690-695
[49] Transactions of the American Institute of Mining and Metallurgical Engineers, 212 (1958), pp. 422-423
[50] Journal of Nuclear Materials, 54 (1974), pp. 24-40
[51] Journal of Nuclear Materials, 276 (2000), pp. 123-142
[52] Journal of Nuclear Materials, 87 (1979), pp. 25-39
[53] Journal of Nuclear Materials, 329 (2004) no. 33, pp. 1008-1012
[54] Journal of Nuclear Materials, 61 (1976), pp. 41-52
[55] Metallurgical Transactions A – Physical Metallurgy and Materials Science, 21 (1990), pp. 1037-1051
[56] Philosophical Magazine A – Physics of Condensed Matter Structure Defects and Mechanical Properties, 55 (1987), pp. 127-140
[57] Philosophical Magazine A – Physics of Condensed Matter Structure Defects and Mechanical Properties, 55 (1987), pp. 111-125
[58] Journal of Nuclear Materials, 141–143 (1986), pp. 929-937
[59] Journal of Nuclear Materials, 283–287 (2000), pp. 799-805
[60] Journal of Nuclear Materials, 343 (2005), pp. 212-218
[61] Acta Materialia, 34 (1986), p. 1771
[62] Journal of Nuclear Materials, 318 (2003), pp. 215-227
[63] K. Farrell, E. Lee, Ion bombardment damage in a modified Fe–9Cr–1Mo steel, in: Effects of Radiations on Materials: 12th International Conference, ASTM, 1985
[64] Journal of Nuclear Materials, 155 (1988), pp. 1268-1273
[65] N. Wanderka, E. Camus, H. Wollenberger, Microstructure evolution of selected ferritic-martensitic steels under dual-beam irradiation, in: Microstructure Evolution During Irradiation, MRS, 1996
[66] Journal of Nuclear Materials, 155 (1988), pp. 1064-1068
[67] Journal of Nuclear Materials, 318 (2003), pp. 249-259
[68] Journal of Nuclear Materials, 179 (1991), pp. 118-124
[69] Journal of Applied Physics, 100 (2006)
[70] Acta Metallurgica Et Materialia, 38 (1990), pp. 2383-2392
[71] Radiation Effects and Defects in Solids, 78 (1983), pp. 315-325
[72] Philosophical Magazine A – Physics of Condensed Matter Structure Defects and Mechanical Properties, 80 (2000), pp. 1507-1543
[73] Journal of Nuclear Materials (2007)
[74] Radiation Effects and Defects in Solids, 78 (1983), pp. 189-211
[75] Journal of Nuclear Materials, 179–181 (1991), p. 162
[76] Journal of Nuclear Materials, 210 (1994), pp. 290-302
[77] Journal of Nuclear Materials, 182 (1991), pp. 230-239
[78] Journal of Nuclear Materials, 329 (2004) no. 33, pp. 1078-1082
[79] Journal of Nuclear Materials, 329 (2004) no. 33, pp. 1113-1116
[80] Materials Science Forum, 97–99 (1992), pp. 451-472
[81] Journal of Nuclear Materials, 323 (2003), pp. 229-242
[82] Journal of Nuclear Materials, 356 (2006), pp. 27-49
[83] Journal of Nuclear Materials, 283–287 (2000), pp. 513-517
[84] Journal of Nuclear Materials, 296 (2001), pp. 119-128
[85] Journal of Nuclear Materials, 318 (2003), pp. 192-199
[86] Journal of Nuclear Materials, 343 (2005), pp. 247-252
[87] Journal of Nuclear Materials (2007)
[88] Journal De Physique IV, 12 (2002), pp. 103-120
[89] Scripta Materialia, 43 (2000), pp. 957-961
[90] C.C. Fu, Annual report of the association EURATOM-CEA, 2006
[91] J. Henry, X. Averty, Y. Dai, J.P. Pizzanelli, Journal of Nuclear Materials, | DOI
[92] Journal of Nuclear Materials, 356 (2006), pp. 78-87
[93] Journal of Nuclear Materials, 367 (2007), pp. 411-416
[94] J. Malaparte, L. Vincent, X. Averty, J. Henry, B. Marini, Engineering and Fracture Mechanics, | DOI
[95] Nuclear Instruments & Methods in Physics Research Section B – Beam Interactions with Materials and Atoms, 228 (2005), pp. 92-99
[96] Physical Review B, 73 (2006)
[97] Philosophical Magazine, 12 (1965), p. 31
[98] Physical Review Letters, 88 (2002)
[99] Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 180 (2001), pp. 187-193
[100] Journal of Nuclear Materials, 258–263 (1998), pp. 1414-1419
[101] Nuclear Engineering and Design, 33 (1975), pp. 50-54
[102] Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 102 (1995), pp. 37-46
[103] Journal of Nuclear Materials, 351 (2006), pp. 28-38
[104] Philosophical Magazine, 85 (2005), pp. 737-743
[105] Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 180 (2001), pp. 85-90
[106] Journal of Nuclear Materials, 351 (2006), pp. 39-46
[107] Journal of Nuclear Materials, 351 (2006), pp. 65-77
[108] Journal of Nuclear Materials, 367–370 (2007) no. 1, pp. 298-304
[109] Physical Review Letters, 95 (2005), p. 075702
[110] Physical Review B, 72 (2005), p. 214119
[111] Journal of Nuclear Materials, 349 (2006), pp. 119-132
[112] Radiation Effects and Defects in Solids, 126 (1993), pp. 185-188
[113] Ultramicroscopy, 83 (2000), pp. 179-191
[114] Journal of Nuclear Materials, 367–370 (2007) no. 1, pp. 462-467
[115] Applied Physics Letters, 88 (2006), p. 91915
[116] Nuclear Fusion, 47 (2007), pp. 1690-1695
[117] S.M. Hafez Haghighat, J. Fikar, R. Schaeublin, Journal of Nuclear Materials (2008), in press
[118] Philosophical Magazine, 84 (2004), pp. 415-428
[119] Journal of Nuclear Materials, 362 (2007), pp. 152-160
[120] Journal of Nuclear Materials, 323 (2003), pp. 268-280
[121] Materials Science and Engineering A, 400–401 (2005), pp. 374-377
[122] Scientific Modeling and Simulation, 14 (2007), pp. 191-201
[123] S.M. Hafez Haghighat, R. Schaeublin, Molecular dynamics modeling of cavity strengthening in irradiated iron, in: Proceedings of Multiscale Materials Modeling, Freiburg, 2006
[124] Philosophical Magazine, 34 (1976), pp. 129-141
[125] Radiation Effects and Defects in Solids, 21 (1974), pp. 161-164
[126] Physical Review B, 72 (2005), p. 064117
[127] Physical Review B, 24 (1981), pp. 5616-5624
Cité par Sources :
Commentaires - Politique