[Diodes laser à base GaSb pour moyen infrarouge (2–5 μm)]
Les diodes laser émettant en continu à température ambiante dans le moyen infrarouge (domaine spectral 2–5 μm) sont réclamées pour des applications telles que la spectroscopie d'absorption par diodes lasers accordables (TDLAS) et le contrôle de l'environnement. Aujourd'hui de tels composants semiconducteurs n'existent pas, à l'exception de diodes laser à puits quantiques de type-I GaInAsSb/AlGaAsSb qui présentent d'excellentes performances à température ambiante, mais uniquement dans le domaine 2.0–2.6 μm. Au delà de 2.6 μm, les lasers à puits quantiques de type-II à GaInAsSb/GaSb, les lasers « W » utilisant le système de type-III InAs/GaInSb, et les lasers à cascade quantique à transitions inter-bandes dans le système InAs/Ga(In)Sb/AlSb, tous élaborés sur substrat GaSb, constituent des filières compétitives pour atteindre l'objectif d'un fonctionnement en continu à température ambiante. Ces différentes technologies sont discutées dans cet article.
Laser diodes emitting at room temperature in continuous wave regime (CW) in the mid-infrared (2–5 μm spectral domain) are needed for applications such as high sensitivity gas analysis by tunable diode laser absorption spectroscopy (TDLAS) and environmental monitoring. Such semiconductor devices do not exist today, with the exception of type-I GaInAsSb/AlGaAsSb quantum well laser diodes which show excellent room temperature performance, but only in the 2.0–2.6 μm wavelength range. Beyond 2.6 μm, type-II GaInAsSb/GaSb QW lasers, type-III ‘W’ InAs/GaInSb lasers, and interband quantum cascade lasers employing the InAs/Ga(In)Sb/AlSb system, all based on GaSb substrate, are competitive technologies to reach the goal of room temperature CW operation. These different technologies are discussed in this paper.
Accepté le :
Publié le :
Mots-clés : Diodes lasers, Moyen infrarouge, GaSb-Lasers de type-I, Lasers de type-II, Lasers « W », Lasers à cascade quantique
André Joullié 1 ; Philippe Christol 2
@article{CRPHYS_2003__4_6_621_0, author = {Andr\'e Joulli\'e and Philippe Christol}, title = {GaSb-based mid-infrared 2{\textendash}5~\ensuremath{\mu}m laser diodes}, journal = {Comptes Rendus. Physique}, pages = {621--637}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00098-7}, language = {en}, }
André Joullié; Philippe Christol. GaSb-based mid-infrared 2–5 μm laser diodes. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 621-637. doi : 10.1016/S1631-0705(03)00098-7. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00098-7/
[1] Atmospheric transmission in the 1 to 14 μm region, Proc. Roy. Soc. A, Volume 206 (1951), p. 87
[2] The HITRAN molecular data base: editions of 1991 and 1992, J. Quantum Spectrosc. Radiat. Transf., Volume 48 (1992), p. 469
[3] The use of tunable diode laser absorption spectroscopy for atmospheric measurements (M.W. Sigrist, ed.), Air Monitoring by Spectroscopy Techniques, Wiley, New York, 1994
[4] Maser action in InAs diodes, Appl. Phys. Lett., Volume 2 (1963), pp. 176-178
[5] Infrared InSb laser diodes in high magnetic fields, Appl. Phys. Lett., Volume 3 (1963), pp. 143-145
[6] Laser effect in indium antimonide, Solid State Comm., Volume 1 (1963), pp. 148-150
[7] Semiconductor lasers with wavelengths >2 μm (W.T. Tsang, ed.), Semiconductors and Semimetals 22, Academic Press, London, 1985, pp. 93-151 (Chapter 3)
[8] Wavelength coverage of lead-europium-selenide-telluride diode lasers, Appl. Phys. Lett., Volume 45 (1984), pp. 193-195
[9] IV-VI quantum wells for infrared lasers, J. Nonlinear Opt. Phys. Mater., Volume 4 (1995), pp. 283-312
[10] Midinfrared lead salt multi-quantum-well diode lasers with 282 K operation, Appl. Phys. Lett., Volume 66 (1995), pp. 2537-2539
[11] Lead salt lasers, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), pp. 547-566
[12] Physics and applications of IV-VI compound semiconductor lasers, Semicond. Sci. Technol., Volume 5 (1990), p. S12-S20
[13] Band structure engineering in strained semiconductor lasers, IEEE J. Quantum Electron., Volume 30 (1994), pp. 366-379
[14] Multiband finite element modelling of wavefunction engineered electro-optical devices, J. Nonlinear Opt. Phys. Mat., Volume 4 (1995), pp. 191-243
[15] 2.3–2.7 μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 794-796
[16] High power multiple quantum well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density, Appl. Phys. Lett., Volume 61 (1992), pp. 1154-1156
[17] High-power GaInAsSb-AlGaAsSb multiple quantum well diode lasers emitting at 1.9 μm, IEEE Photon. Technol. Lett., Volume 6 (1994), pp. 7-9
[18] Room temperature 2.78 μm AlGaAsSb/InGaAsSb quantum well lasers, Appl. Phys. Lett., Volume 66 (1995), pp. 1942-1944
[19] Mid-infrared GaSb-InAs based multiple quantum well lasers, SPIE, Volume 3284 (1998), pp. 247-255
[20] New developments in mid-infrared Sb-based lasers, J. Phys. IV (France), Volume 9 (1999), p. Pr2.79-Pr2.96
[21] High temperature GaInAsSb/GaAlAsSb quantum well singlemode continuous wave lasers emitting near 2.3 μm, Electron. Lett., Volume 36 (2000), pp. 537-539
[22] High efficiency GaInAsSb/GaSb type-II quantum well continuous wave lasers, Semicond. Sci. Technol., Volume 15 (2000), pp. 283-288
[23] Type-II quantum well lasers for the mid-wavelength infrared, Appl. Phys. Lett., Volume 67 (1995), pp. 757-759
[24] Room-temperature type-II quantum well diode laser with broadened waveguide emitting at λ=3.30 μm, Electron. Lett., Volume 35 (1999), pp. 1743-1745
[25] Continuous-wave operation of λ=3.25 μm broadened-waveguide W quantum-well diode lasers up to T=195 K, Appl. Phys. Lett., Volume 6 (2000), pp. 256-258
[26] Mid-infrared ‘W’ lasers, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), pp. 489-503
[27] Quantum cascade laser, Science, Volume 264 (1994), pp. 553-556
[28] Single-mode tunable, pulsed, and continuous wave quantum-cascade distributed feedback lasers at λ=4.6–4.7 μm, Appl. Phys. Lett., Volume 76 (2000), pp. 1092-1094
[29] Short wavelength (λ∼3.4 μm) quantum cascade laser based on strain-compensated InGaAs/AlInAs, Appl. Phys. Lett., Volume 72 (1998), pp. 680-682
[30] New frontiers in quantum cascade lasers and applications, IEEE J. Select. Topics Quantum Electron., Volume 6 (2000), pp. 931-947
[31] High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers, Semicond. Sci. Technol., Volume 15 (2000), p. L44-L46
[32] F. Capasso, Optics & Photonics News, May 2001, p. 41
[33] Continuous-wave operation of a 5.2 μm quantum-cascade laser up to 210 K, Appl. Phys. Lett., Volume 79 (2001), pp. 1747-1749
[34] Infrared lasers based on intersubband transitions in quantum wells, Superlatt. Microstr., Volume 17 (1995), pp. 77-83
[35] High-power interband cascade lasers with quantum efficiency >450%, Electron. Lett., Volume 35 (1999), pp. 1254-1255
[36] Interband cascade lasers: progress and challenges, Physica E, Volume 7 (2000), pp. 69-75
[37] Midwave infrared diode lasers based on GaSb/InAs and InAs/AlSb superlattices, Appl. Phys. Lett., Volume 67 (1995), pp. 3700-3702
[38] Ultra low-loss broadened-waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers, Appl. Phys. Lett., Volume 69 (1996), pp. 2006-2008
[39] Heterojunction band offsets and effective masses in III-V quaternary alloys, Semicond. Sci. Technol., Volume 6 (1991), pp. 27-31
[40] Improvement of Sb-based multiquantum well lasers by Coulomb enhancement, IEE Proc.-Optoelectron., Volume 146 (1999), pp. 3-8
[41] Improving InAs double heterostructure lasers with better confinement, IEEE J. Quantum Electron., Volume 28 (1992), pp. 1261-1268
[42] Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers, Appl. Phys. Lett., Volume 68 (1996), pp. 738-740
[43] 4W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes, Appl. Phys. Lett., Volume 70 (1997), pp. 2931-2933
[44] High power broadened-waveguide InGaAsSb/AlGaAsSb quantum-well diode lasers emitting at 2 μm, SPIE Proc., Volume 3284 (1998), pp. 238-246
[45] M. Garcia, A. Sahli, C. Becker, A. Pérona, Y. Rouillard, C. Sirtori, X. Marcadet, Low threshold high power efficiency room temperature continuous wave operation diode laser emitting at 2.26 μm, submitted
[46] Room temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1W continuous waves, Appl. Phys. Lett., Volume 81 (2002), pp. 3146-3148
[47] High CW power (>200 mW/facet) at 3.4 μm from InAsSb/InAlAsSb strained quantum well diode lasers, Electron. Lett., Volume 32 (1996), pp. 1296-1297 (See also 175 K continuous wave operation of InAsSb/InAlAsSb quantum well diode lasers emitting at 3.5 μm Appl. Phys. Lett., 68, 1996, pp. 2936-2938)
[48] Low threshold interband cascade lasers with power efficiency exceeding 9%, Appl. Phys. Lett., Volume 76 (2000), pp. 3167-3169
[49] Long Wavelength Semiconductor Lasers (S. Mitra, ed.), Van Nostrand–Reinhold, New York, 1986
[50] Quantum Processes in Semiconductors, Clarendon Press, Oxford, 1988
[51] Optoélectronique, Masson, Paris, 1998 (pp. 265–271)
[52] Auger recombination in quantum well semiconductors: calculation with realistic energy bands, Semicond. Sci. Technol., Volume 7 (1992), pp. 1337-1340
[53] , Semiconductors and Semimetals, 3, Academic Press, New York, 1967 (Chapter 9)
(O. Willardson; O. Beer, eds.)[54] Theoretical performance of InAs/InxGa1−xSb superlattice-based midwave infrared lasers, J. Appl. Phys., Volume 76 (1994), pp. 1940-1942
[55] Mechanism of suppression of Auger recombination processes in type-II heterostructures, Appl. Phys. Lett., Volume 67 (1995), pp. 2681-2683
[56] Type-II mid-IR lasers operating at room temperature, Appl. Phys. Lett., Volume 68 (1996), pp. 2976-2978
[57] et al. Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells, Appl. Phys. Lett., Volume 73 (1998), pp. 2857-2859
[58] Optoélectronique (E. Rosencher; B. Vinter, eds.), Masson, Paris, 1998, p. 234 (reported)
[59] Calculation of Auger coefficients for III-V compounds with emphasis on GaSb, Phys. Status Solidi B, Volume 89 (1978), pp. 357-365
[60] Band structure engineering for low threshold high efficiency semiconductor lasers, Electron. Lett., Volume 22 (1986), pp. 249-250
[61] Trace gas detection with antimonide-based quantum-well diode lasers, Spectrochim. Acta Part A, Volume 58 (2002), pp. 2405-2412
[62] Growth limitations by the miscibility gap in the liquid phase epitaxy of Ga1−xInxAsySb1−y on GaSb, Mater. Sci. Engrg. B, Volume 9 (1991), pp. 125-128
[63] Strained multiple quantum well lasers grown on GaSb emitting between 2 and 2.4 μm, SPIE, Volume 2997 (1997), pp. 2-13
[64] Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 μm at room temperature, Electron. Lett., Volume 32 (1996), pp. 2279-2280
[65] Long-wavelength (Ga, In)Sb/GaSb strained quantum well lasers grown by molecular beam epitaxy, Semicond. Sci. Technol., Volume 13 (1998), pp. 936-940
[66] Room-temperature 2.63 μm GaInAsSb/GaSb strained quantum-well laser diodes, Semicond. Sci. Technol., Volume 14 (1999), pp. 283-288
[67] Continuous-wave operation of GaInAsSb-GaSb type-II quantum-well ridge lasers, IEEE J. Select. Topics Quantum Electron., Volume 5 (1999), pp. 711-715
[68] High power asymmetrical InAsSb/InAsSbP/AlAsSb double heterostructure lasers emitting at 3.4 μm, Appl. Phys. Lett., Volume 74 (1999), pp. 1194-1196
[69] High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 μm, Appl. Phys. Lett., Volume 68 (1996), pp. 2790-2792 (See also SPIE, 3001, 1997, pp. 344-355)
[70] Double heterostructure diode lasers emitting at 3 μm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers, Appl. Phys. Lett., Volume 64 (1994), pp. 2474-2476
[71] Continuous wave operation of InAs/InAsxSb1−x mid-infrared lasers, Appl. Phys. Lett., Volume 66 (1995), pp. 118-120
[72] Pseudomorphic InAsSb multiple quantum well InAsSb lasers emitting at 3.6 μm grown by metal organic chemical vapour deposition, Appl. Phys. Lett., Volume 68 (1996), pp. 1332-1334
[73] Compressively strained multiple quantum well InAsSb lasers emitting at 3.6 μm grown by metal-organic chemical vapor deposition, Appl. Phys. Lett., Volume 70 (1997), pp. 443-445
[74] MBE growth of high power InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 μm, J. Crystal Growth, Volume 175/176 (1997), pp. 825-832
[75] The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3–6 μm) lasers and LED's, IEEE J. Select. Topics Quantum Electron., Volume 3 (1997), pp. 739-748
[76] InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition, Appl. Phys. Lett., Volume 74 (1999), pp. 3438-3440
[77] Mid-infrared In1−xAlxSb/InSb heterostructure diode lasers, Appl. Phys. Lett., Volume 70 (1997), pp. 931-933
[78] Role of internal loss in limiting type-II mid-IR laser performance, J. Appl. Phys., Volume 83 (1998), pp. 2384-2391
[79] InAs/InAs(PSb) quantum-well laser structure for the midwavelength infrared region, Physica E, Volume 14 (2002), pp. 375-384
[80] InAs/AlSb quantum-cascade light-emitting devices in the 3–5 μm wavelength region, Appl. Phys. Lett., Volume 76 (2001), pp. 1029-1031
[81] GaAs- and GaSb-based quantum cascade lasers: the challenge of the new materials, 5th Int. Conf. Mid-Infrared Optoelectronics Materials and Devices (MIOMD-5), Annapolis, MA, 8–11 September 2002
[82] Novel type-II quantum cascade lasers, J. Appl. Phys., Volume 79 (1996), pp. 8197-8203
[83] Type-II and type-I interband cascade lasers, Electron. Lett., Volume 32 (1996), pp. 45-46
[84] Mid-IR interband cascade electroluminescence in type-II quantum wells, Electron. Lett., Volume 32 (1996), pp. 1621-1622
[85] Type-II interband quantum cascade laser at 3.8 μm, Electron. Lett., Volume 33 (1997), pp. 598-599
[86] High power mid-infrared interband cascade laser based on type-II quantum wells, Appl. Phys. Lett., Volume 71 (1997), pp. 2409-2411
[87] Mid-infrared interband cascade lasers with quantum efficiencies >200%, Appl. Phys. Lett., Volume 72 (1998), pp. 2220-2222
[88] Mid infrared interband cascade lasers based on type-II heterostructures, Microelectron. J., Volume 30 (1999), pp. 1043-1056
[89] High efficiency interband cascade lasers with peak power exceeding 4W/facet, Appl. Phys. Lett., Volume 75 (1999), pp. 2362-2364
[90] Interband cascade laser emitting >1 photon per injected electron, IEEE Photonics Technol. Lett., Volume 9 (1997), pp. 1433-1435
[91] Near room temperature mid infrared interband cascade laser, Appl. Phys. Lett., Volume 72 (1998), pp. 2370-2372
[92] et al. Type-II quantum cascade lasers, Proc. SPIE, Volume 3284 (1998), pp. 308-317
[93] Room temperature type-II interband cascade laser, Appl. Phys. Lett., Volume 81 (2002), pp. 397-399
[94] A. Perona, Réalisation par MBE et caractérisation physique de diodes lasers à puits quantiques GaInAsSb/AlGaAsSb émettant vers 2,3 μm, Thesis, Montpellier-II University, Montpellier (F), October 2002
- MBE growth and properties of GaInAsSb alloys deep inside the miscibility gap, Journal of Crystal Growth, Volume 657 (2025), p. 128107 | DOI:10.1016/j.jcrysgro.2025.128107
- Modeling of an Er3+-Doped ZBLAN Fiber Laser With Ion Clustering Effect, Journal of Lightwave Technology, Volume 41 (2023) no. 1, p. 265 | DOI:10.1109/jlt.2022.3212676
- Performance simulation of an InGaSb/GaSb based quantum well structure for laser diode applications, Physics Letters A, Volume 467 (2023), p. 128711 | DOI:10.1016/j.physleta.2023.128711
- Towards miniaturized gas sensors based on substrate-integrated hollow waveguides and interband cascade light emitting diodes, Sensors Diagnostics, Volume 2 (2023) no. 2, p. 438 | DOI:10.1039/d2sd00220e
- Efficient Low Threshold Frequency Conversion in AlGaAs-On-Insulator Waveguides, Frontiers in Photonics, Volume 3 (2022) | DOI:10.3389/fphot.2022.904651
- Digital Alloy Staircase Avalanche Photodetectors With Tunneling-Enhanced Gain, IEEE Journal of Selected Topics in Quantum Electronics, Volume 28 (2022) no. 2: Optical Detectors, p. 1 | DOI:10.1109/jstqe.2021.3131275
- , Nonlinear Frequency Generation and Conversion: Materials and Devices XXI (2022), p. 46 | DOI:10.1117/12.2607179
- Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources, Optics Express, Volume 30 (2022) no. 4, p. 5222 | DOI:10.1364/oe.447269
- Cytotoxicity and pro-inflammatory effect of GaSb thin films in L929 cells, International Journal of Modern Physics B, Volume 35 (2021) no. 29 | DOI:10.1142/s0217979221502970
- Optical gain enhancement and wavefunction confinement tuning in AlSb/InGaAsP/GaAsSb heterostructures, The European Physical Journal B, Volume 94 (2021) no. 6 | DOI:10.1140/epjb/s10051-021-00131-w
- Effect of the Crystallographic Orientation of GaSb Films on Their Structural Properties during MBE Heteroepitaxy on Vicinal Si(001) Substrates, Semiconductors, Volume 54 (2020) no. 12, p. 1548 | DOI:10.1134/s1063782620120295
- , 2019 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC) (2019), p. 1 | DOI:10.1109/cleoe-eqec.2019.8873056
- Hot-Carrier Solar Cells: Modeling Carrier Transport, Advanced Micro- and Nanomaterials for Photovoltaics (2019), p. 53 | DOI:10.1016/b978-0-12-814501-2.00004-9
- The in situ observation of faceted dendrite growth during the directional solidification of GaSb, Scripta Materialia, Volume 168 (2019), p. 56 | DOI:10.1016/j.scriptamat.2019.04.022
- Structural and optical characterization of GaSb on Si (001) grown by Molecular Beam Epitaxy, Semiconductor Science and Technology, Volume 34 (2019) no. 3, p. 035013 | DOI:10.1088/1361-6641/aafcbe
- , 2018 IEEE International Semiconductor Laser Conference (ISLC) (2018), p. 1 | DOI:10.1109/islc.2018.8516247
- Dual-color short-wavelength infrared photodetector based on InGaAsSb/GaSb heterostructure, AIP Advances, Volume 8 (2018) no. 2 | DOI:10.1063/1.5020532
- Effects of As2 pressure on InAs heteroepitaxial growth on vicinal GaSb(001) substrate by molecular beam epitaxy, Japanese Journal of Applied Physics, Volume 57 (2018) no. 11, p. 115502 | DOI:10.7567/jjap.57.115502
- Dual-wavelength GaSb-based mid infrared photonic crystal surface emitting lasers, Journal of Applied Physics, Volume 123 (2018) no. 9 | DOI:10.1063/1.5012113
- Dual-Wavelength InGaAsSb/AlGaAsSb Quantum-Well Light-Emitting Diodes, Journal of the Korean Physical Society, Volume 72 (2018) no. 10, p. 1249 | DOI:10.3938/jkps.72.1249
- THz Quantum Cascade Lasers, Molecular Beam Epitaxy (2018), p. 597 | DOI:10.1016/b978-0-12-812136-8.00028-1
- , 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), p. 1 | DOI:10.1109/cleoe-eqec.2017.8086348
- Wavelength Dependence of Efficiency Limiting Mechanisms in Type-I Mid-Infrared GaInAsSb/GaSb Lasers, IEEE Journal of Selected Topics in Quantum Electronics, Volume 23 (2017) no. 6, p. 1 | DOI:10.1109/jstqe.2017.2687823
- Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance, Plasma Science and Technology, Volume 19 (2017) no. 12, p. 125503 | DOI:10.1088/2058-6272/aa89e0
- Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy, Sensors and Actuators B: Chemical, Volume 244 (2017), p. 365 | DOI:10.1016/j.snb.2016.12.146
- Low frequency noise investigation of 2–3 μm GaSb-based laser diodes, Solid-State Electronics, Volume 133 (2017), p. 70 | DOI:10.1016/j.sse.2017.05.002
- Polarization-independent gain in mid-infrared interband cascade lasers, AIP Advances, Volume 6 (2016) no. 11 | DOI:10.1063/1.4968190
- Calculation of tunable type-II band alignments in InAsxSbyP1− x − y/InAs heterojunctions, Japanese Journal of Applied Physics, Volume 55 (2016) no. 1, p. 011201 | DOI:10.7567/jjap.55.011201
- Correlation of the nanostructure with optoelectronic properties during rapid thermal annealing of Ga(NAsP) quantum wells grown on Si(001) substrates, Journal of Applied Physics, Volume 119 (2016) no. 2 | DOI:10.1063/1.4939889
- , AOPC 2015: Advances in Laser Technology and Applications, Volume 9671 (2015), p. 96710P | DOI:10.1117/12.2199252
- Stromlose Abscheidung von III‐V‐Halbleiternanostrukturen aus ionischen Flüssigkeiten bei Raumtemperatur, Angewandte Chemie, Volume 127 (2015) no. 40, p. 12038 | DOI:10.1002/ange.201504764
- Electroless Deposition of III–V Semiconductor Nanostructures from Ionic Liquids at Room Temperature, Angewandte Chemie International Edition, Volume 54 (2015) no. 40, p. 11870 | DOI:10.1002/anie.201504764
- Band Structure, Optical Transition, and Optical Gain of Type-II InAs(N)/GaSb Quantum Wells Laser Diodes Modeled Within 16-Band and 14-Band
- Low symmetry phases of(Al, Ga)Sbunder low pressure, International Journal of Modern Physics B, Volume 29 (2015) no. 09, p. 1550056 | DOI:10.1142/s0217979215500563
- GaSb-based mid infrared photonic crystal surface emitting lasers, Optics Express, Volume 23 (2015) no. 9, p. 11741 | DOI:10.1364/oe.23.011741
- Gain and Threshold Current in Type II In(As)Sb Mid-Infrared Quantum Dot Lasers, Photonics, Volume 2 (2015) no. 2, p. 414 | DOI:10.3390/photonics2020414
- Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers, Applied Physics Letters, Volume 105 (2014) no. 3 | DOI:10.1063/1.4891636
- Quantum Cascade Laser Based Chemical Sensing Using Optically Resonant Cavities, Cavity-Enhanced Spectroscopy and Sensing, Volume 179 (2014), p. 93 | DOI:10.1007/978-3-642-40003-2_3
- Widely tunable frequency conversion in monolithic semiconductor waveguides at 24 μm, Optics Letters, Volume 39 (2014) no. 12, p. 3591 | DOI:10.1364/ol.39.003591
- Stability of arsenide and antimonide surfaces during molecular beam epitaxy growth, Journal of Vacuum Science Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Volume 31 (2013) no. 6, p. 061204 | DOI:10.1116/1.4827208
- [h h l]Orientation dependence of optoelectronic properties in InAsN/GaSb quantum well laser diodes with W and M design, Semiconductor Science and Technology, Volume 28 (2013) no. 6, p. 065006 | DOI:10.1088/0268-1242/28/6/065006
- Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl, Opto-Electronics Review, Volume 19 (2011) no. 2 | DOI:10.2478/s11772-011-0020-8
- Theoretical investigation of infrared generation mechanism by quantum coherence in low-dimensional semiconductor heterostructures, Acta Physica Sinica, Volume 59 (2010) no. 9, p. 6185 | DOI:10.7498/aps.59.6185
- Analysis, Optimization, and Design of 2–2.8
Stacked Multiple-Junction PIN GaInAsSb/GaSb Photodetectors for Future O/E Interconnections, IEEE Transactions on Electron Devices, Volume 57 (2010) no. 2, p. 361 | DOI:10.1109/ted.2009.2036303 - Optical performances of InAs/GaSb/InSb short-period superlattice laser diode for mid-infrared emission, Journal of Applied Physics, Volume 108 (2010) no. 9 | DOI:10.1063/1.3503513
- Measurement and Analysis of Thermal Parameters and Efficiency of Laser Heterostructures and Light-Emitting Diodes, Metrology and Measurement Systems, Volume 17 (2010) no. 1, p. 39 | DOI:10.2478/v10178-010-0004-x
- Room temperature spectroscopic characterization of mid-infrared GaInSb quantum-well laser structures, Semiconductor Science and Technology, Volume 25 (2010) no. 3, p. 035005 | DOI:10.1088/0268-1242/25/3/035005
- Temperature dependence of mid-infrared electroluminescence in type II InAsSb/InAs multi-quantum well light-emitting diodes, Semiconductor Science and Technology, Volume 24 (2009) no. 7, p. 075001 | DOI:10.1088/0268-1242/24/7/075001
- Fourier transform infrared surface photovoltage spectroscopy for the investigation of mid‐infrared semiconductor lasers, physica status solidi (a), Volume 206 (2009) no. 5, p. 808 | DOI:10.1002/pssa.200881413
- , 2008 4th International Conference on Advanced Optoelectronics and Lasers (2008), p. 285 | DOI:10.1109/caol.2008.4671923
- Room Temperature Observation of the Energy Levels of Mid-Infrared Quantum Well Lasers using Fourier Transform Infrared-Surface Photovoltage Spectroscopy, Applied Physics Express, Volume 1 (2008), p. 062001 | DOI:10.1143/apex.1.062001
- Lasers and photodetectors for mid-infrared 2–3 μm applications, Journal of Applied Physics, Volume 104 (2008) no. 9 | DOI:10.1063/1.3002408
- InAsN/GaSb/InAsN ‘W’ quantum well laser for mid-infrared emission: from electronic structure to threshold current density calculations, Journal of Physics D: Applied Physics, Volume 41 (2008) no. 21, p. 215106 | DOI:10.1088/0022-3727/41/21/215106
- Transmission Electron Microscopy Study of Sb-Based Quantum Dots, Microscopy of Semiconducting Materials 2007, Volume 120 (2008), p. 251 | DOI:10.1007/978-1-4020-8615-1_55
- Nitrogen effect on optical gain and radiative current density for mid-infrared InAs(N)/GaSb/InAs(N) quantum-well laser, Physica E: Low-dimensional Systems and Nanostructures, Volume 40 (2008) no. 3, p. 489 | DOI:10.1016/j.physe.2007.07.003
- Determination of the fundamental and spin-orbit-splitting band gap energies of InAsSb-based ternary and pentenary alloys using mid-infrared photoreflectance, Thin Solid Films, Volume 516 (2008) no. 22, p. 8049 | DOI:10.1016/j.tsf.2008.04.012
- The development of room temperature LEDs and lasers for the mid‐infrared spectral range, physica status solidi (a), Volume 205 (2008) no. 1, p. 129 | DOI:10.1002/pssa.200776833
- Midinfrared photoreflectance study of InAs-rich InAsSb and GaInAsPSb indicating negligible bowing for the spin orbit splitting energy, Applied Physics Letters, Volume 90 (2007) no. 17 | DOI:10.1063/1.2728752
- A review of energy bandgap engineering in III–V semiconductor alloys for mid-infrared laser applications, Solid-State Electronics, Volume 51 (2007) no. 1, p. 6 | DOI:10.1016/j.sse.2006.12.005
- Investigations of InSb‐based quantum dots grown by molecular‐beam epitaxy, physica status solidi c, Volume 4 (2007) no. 5, p. 1743 | DOI:10.1002/pssc.200674268
- Recombination processes in midinfrared InGaAsSb diode lasers emitting at 2.37μm, Applied Physics Letters, Volume 89 (2006) no. 5 | DOI:10.1063/1.2243973
- Structural and optical properties of InSb quantum dots for mid‐IR applications, physica status solidi (b), Volume 243 (2006) no. 15, p. 3959 | DOI:10.1002/pssb.200671512
- GaSb based lasers operating near 2.3 μm for high resolution absorption spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 61 (2005) no. 13-14, p. 3066 | DOI:10.1016/j.saa.2004.11.029
- Fabrication of GaSb Microlenses by Photo and E-Beam Lithography and Dry Etching, Solid State Phenomena, Volume 99-100 (2004), p. 83 | DOI:10.4028/www.scientific.net/ssp.99-100.83
- , Proceedings of CAOL'2003. 1st International Conference on Advanced Optoelectronics and Lasers. Jontly with 1st Workshop on Precision Oscillations in Electronics and Optics (IEEE Cat. No.03EX715), Volume 1 (2003), p. 14 | DOI:10.1109/caol.2003.1250502
Cité par 65 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier