[Diodes laser à base GaSb pour moyen infrarouge (2–5 μm)]
Les diodes laser émettant en continu à température ambiante dans le moyen infrarouge (domaine spectral 2–5 μm) sont réclamées pour des applications telles que la spectroscopie d'absorption par diodes lasers accordables (TDLAS) et le contrôle de l'environnement. Aujourd'hui de tels composants semiconducteurs n'existent pas, à l'exception de diodes laser à puits quantiques de type-I GaInAsSb/AlGaAsSb qui présentent d'excellentes performances à température ambiante, mais uniquement dans le domaine 2.0–2.6 μm. Au delà de 2.6 μm, les lasers à puits quantiques de type-II à GaInAsSb/GaSb, les lasers « W » utilisant le système de type-III InAs/GaInSb, et les lasers à cascade quantique à transitions inter-bandes dans le système InAs/Ga(In)Sb/AlSb, tous élaborés sur substrat GaSb, constituent des filières compétitives pour atteindre l'objectif d'un fonctionnement en continu à température ambiante. Ces différentes technologies sont discutées dans cet article.
Laser diodes emitting at room temperature in continuous wave regime (CW) in the mid-infrared (2–5 μm spectral domain) are needed for applications such as high sensitivity gas analysis by tunable diode laser absorption spectroscopy (TDLAS) and environmental monitoring. Such semiconductor devices do not exist today, with the exception of type-I GaInAsSb/AlGaAsSb quantum well laser diodes which show excellent room temperature performance, but only in the 2.0–2.6 μm wavelength range. Beyond 2.6 μm, type-II GaInAsSb/GaSb QW lasers, type-III ‘W’ InAs/GaInSb lasers, and interband quantum cascade lasers employing the InAs/Ga(In)Sb/AlSb system, all based on GaSb substrate, are competitive technologies to reach the goal of room temperature CW operation. These different technologies are discussed in this paper.
Accepté le :
Publié le :
Mots-clés : Diodes lasers, Moyen infrarouge, GaSb-Lasers de type-I, Lasers de type-II, Lasers « W », Lasers à cascade quantique
André Joullié 1 ; Philippe Christol 2
@article{CRPHYS_2003__4_6_621_0, author = {Andr\'e Joulli\'e and Philippe Christol}, title = {GaSb-based mid-infrared 2{\textendash}5~\ensuremath{\mu}m laser diodes}, journal = {Comptes Rendus. Physique}, pages = {621--637}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00098-7}, language = {en}, }
André Joullié; Philippe Christol. GaSb-based mid-infrared 2–5 μm laser diodes. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 621-637. doi : 10.1016/S1631-0705(03)00098-7. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00098-7/
[1] Atmospheric transmission in the 1 to 14 μm region, Proc. Roy. Soc. A, Volume 206 (1951), p. 87
[2] The HITRAN molecular data base: editions of 1991 and 1992, J. Quantum Spectrosc. Radiat. Transf., Volume 48 (1992), p. 469
[3] The use of tunable diode laser absorption spectroscopy for atmospheric measurements (M.W. Sigrist, ed.), Air Monitoring by Spectroscopy Techniques, Wiley, New York, 1994
[4] Maser action in InAs diodes, Appl. Phys. Lett., Volume 2 (1963), pp. 176-178
[5] Infrared InSb laser diodes in high magnetic fields, Appl. Phys. Lett., Volume 3 (1963), pp. 143-145
[6] Laser effect in indium antimonide, Solid State Comm., Volume 1 (1963), pp. 148-150
[7] Semiconductor lasers with wavelengths >2 μm (W.T. Tsang, ed.), Semiconductors and Semimetals 22, Academic Press, London, 1985, pp. 93-151 (Chapter 3)
[8] Wavelength coverage of lead-europium-selenide-telluride diode lasers, Appl. Phys. Lett., Volume 45 (1984), pp. 193-195
[9] IV-VI quantum wells for infrared lasers, J. Nonlinear Opt. Phys. Mater., Volume 4 (1995), pp. 283-312
[10] Midinfrared lead salt multi-quantum-well diode lasers with 282 K operation, Appl. Phys. Lett., Volume 66 (1995), pp. 2537-2539
[11] Lead salt lasers, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), pp. 547-566
[12] Physics and applications of IV-VI compound semiconductor lasers, Semicond. Sci. Technol., Volume 5 (1990), p. S12-S20
[13] Band structure engineering in strained semiconductor lasers, IEEE J. Quantum Electron., Volume 30 (1994), pp. 366-379
[14] Multiband finite element modelling of wavefunction engineered electro-optical devices, J. Nonlinear Opt. Phys. Mat., Volume 4 (1995), pp. 191-243
[15] 2.3–2.7 μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 794-796
[16] High power multiple quantum well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density, Appl. Phys. Lett., Volume 61 (1992), pp. 1154-1156
[17] High-power GaInAsSb-AlGaAsSb multiple quantum well diode lasers emitting at 1.9 μm, IEEE Photon. Technol. Lett., Volume 6 (1994), pp. 7-9
[18] Room temperature 2.78 μm AlGaAsSb/InGaAsSb quantum well lasers, Appl. Phys. Lett., Volume 66 (1995), pp. 1942-1944
[19] Mid-infrared GaSb-InAs based multiple quantum well lasers, SPIE, Volume 3284 (1998), pp. 247-255
[20] New developments in mid-infrared Sb-based lasers, J. Phys. IV (France), Volume 9 (1999), p. Pr2.79-Pr2.96
[21] High temperature GaInAsSb/GaAlAsSb quantum well singlemode continuous wave lasers emitting near 2.3 μm, Electron. Lett., Volume 36 (2000), pp. 537-539
[22] High efficiency GaInAsSb/GaSb type-II quantum well continuous wave lasers, Semicond. Sci. Technol., Volume 15 (2000), pp. 283-288
[23] Type-II quantum well lasers for the mid-wavelength infrared, Appl. Phys. Lett., Volume 67 (1995), pp. 757-759
[24] Room-temperature type-II quantum well diode laser with broadened waveguide emitting at λ=3.30 μm, Electron. Lett., Volume 35 (1999), pp. 1743-1745
[25] Continuous-wave operation of λ=3.25 μm broadened-waveguide W quantum-well diode lasers up to T=195 K, Appl. Phys. Lett., Volume 6 (2000), pp. 256-258
[26] Mid-infrared ‘W’ lasers, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), pp. 489-503
[27] Quantum cascade laser, Science, Volume 264 (1994), pp. 553-556
[28] Single-mode tunable, pulsed, and continuous wave quantum-cascade distributed feedback lasers at λ=4.6–4.7 μm, Appl. Phys. Lett., Volume 76 (2000), pp. 1092-1094
[29] Short wavelength (λ∼3.4 μm) quantum cascade laser based on strain-compensated InGaAs/AlInAs, Appl. Phys. Lett., Volume 72 (1998), pp. 680-682
[30] New frontiers in quantum cascade lasers and applications, IEEE J. Select. Topics Quantum Electron., Volume 6 (2000), pp. 931-947
[31] High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers, Semicond. Sci. Technol., Volume 15 (2000), p. L44-L46
[32] F. Capasso, Optics & Photonics News, May 2001, p. 41
[33] Continuous-wave operation of a 5.2 μm quantum-cascade laser up to 210 K, Appl. Phys. Lett., Volume 79 (2001), pp. 1747-1749
[34] Infrared lasers based on intersubband transitions in quantum wells, Superlatt. Microstr., Volume 17 (1995), pp. 77-83
[35] High-power interband cascade lasers with quantum efficiency >450%, Electron. Lett., Volume 35 (1999), pp. 1254-1255
[36] Interband cascade lasers: progress and challenges, Physica E, Volume 7 (2000), pp. 69-75
[37] Midwave infrared diode lasers based on GaSb/InAs and InAs/AlSb superlattices, Appl. Phys. Lett., Volume 67 (1995), pp. 3700-3702
[38] Ultra low-loss broadened-waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers, Appl. Phys. Lett., Volume 69 (1996), pp. 2006-2008
[39] Heterojunction band offsets and effective masses in III-V quaternary alloys, Semicond. Sci. Technol., Volume 6 (1991), pp. 27-31
[40] Improvement of Sb-based multiquantum well lasers by Coulomb enhancement, IEE Proc.-Optoelectron., Volume 146 (1999), pp. 3-8
[41] Improving InAs double heterostructure lasers with better confinement, IEEE J. Quantum Electron., Volume 28 (1992), pp. 1261-1268
[42] Low threshold PbEuSeTe/PbTe separate confinement buried heterostructure diode lasers, Appl. Phys. Lett., Volume 68 (1996), pp. 738-740
[43] 4W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes, Appl. Phys. Lett., Volume 70 (1997), pp. 2931-2933
[44] High power broadened-waveguide InGaAsSb/AlGaAsSb quantum-well diode lasers emitting at 2 μm, SPIE Proc., Volume 3284 (1998), pp. 238-246
[45] M. Garcia, A. Sahli, C. Becker, A. Pérona, Y. Rouillard, C. Sirtori, X. Marcadet, Low threshold high power efficiency room temperature continuous wave operation diode laser emitting at 2.26 μm, submitted
[46] Room temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1W continuous waves, Appl. Phys. Lett., Volume 81 (2002), pp. 3146-3148
[47] High CW power (>200 mW/facet) at 3.4 μm from InAsSb/InAlAsSb strained quantum well diode lasers, Electron. Lett., Volume 32 (1996), pp. 1296-1297 (See also 175 K continuous wave operation of InAsSb/InAlAsSb quantum well diode lasers emitting at 3.5 μm Appl. Phys. Lett., 68, 1996, pp. 2936-2938)
[48] Low threshold interband cascade lasers with power efficiency exceeding 9%, Appl. Phys. Lett., Volume 76 (2000), pp. 3167-3169
[49] Long Wavelength Semiconductor Lasers (S. Mitra, ed.), Van Nostrand–Reinhold, New York, 1986
[50] Quantum Processes in Semiconductors, Clarendon Press, Oxford, 1988
[51] Optoélectronique, Masson, Paris, 1998 (pp. 265–271)
[52] Auger recombination in quantum well semiconductors: calculation with realistic energy bands, Semicond. Sci. Technol., Volume 7 (1992), pp. 1337-1340
[53] , Semiconductors and Semimetals, 3, Academic Press, New York, 1967 (Chapter 9)
(O. Willardson; O. Beer, eds.)[54] Theoretical performance of InAs/InxGa1−xSb superlattice-based midwave infrared lasers, J. Appl. Phys., Volume 76 (1994), pp. 1940-1942
[55] Mechanism of suppression of Auger recombination processes in type-II heterostructures, Appl. Phys. Lett., Volume 67 (1995), pp. 2681-2683
[56] Type-II mid-IR lasers operating at room temperature, Appl. Phys. Lett., Volume 68 (1996), pp. 2976-2978
[57] et al. Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells, Appl. Phys. Lett., Volume 73 (1998), pp. 2857-2859
[58] Optoélectronique (E. Rosencher; B. Vinter, eds.), Masson, Paris, 1998, p. 234 (reported)
[59] Calculation of Auger coefficients for III-V compounds with emphasis on GaSb, Phys. Status Solidi B, Volume 89 (1978), pp. 357-365
[60] Band structure engineering for low threshold high efficiency semiconductor lasers, Electron. Lett., Volume 22 (1986), pp. 249-250
[61] Trace gas detection with antimonide-based quantum-well diode lasers, Spectrochim. Acta Part A, Volume 58 (2002), pp. 2405-2412
[62] Growth limitations by the miscibility gap in the liquid phase epitaxy of Ga1−xInxAsySb1−y on GaSb, Mater. Sci. Engrg. B, Volume 9 (1991), pp. 125-128
[63] Strained multiple quantum well lasers grown on GaSb emitting between 2 and 2.4 μm, SPIE, Volume 2997 (1997), pp. 2-13
[64] Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 μm at room temperature, Electron. Lett., Volume 32 (1996), pp. 2279-2280
[65] Long-wavelength (Ga, In)Sb/GaSb strained quantum well lasers grown by molecular beam epitaxy, Semicond. Sci. Technol., Volume 13 (1998), pp. 936-940
[66] Room-temperature 2.63 μm GaInAsSb/GaSb strained quantum-well laser diodes, Semicond. Sci. Technol., Volume 14 (1999), pp. 283-288
[67] Continuous-wave operation of GaInAsSb-GaSb type-II quantum-well ridge lasers, IEEE J. Select. Topics Quantum Electron., Volume 5 (1999), pp. 711-715
[68] High power asymmetrical InAsSb/InAsSbP/AlAsSb double heterostructure lasers emitting at 3.4 μm, Appl. Phys. Lett., Volume 74 (1999), pp. 1194-1196
[69] High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 μm, Appl. Phys. Lett., Volume 68 (1996), pp. 2790-2792 (See also SPIE, 3001, 1997, pp. 344-355)
[70] Double heterostructure diode lasers emitting at 3 μm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers, Appl. Phys. Lett., Volume 64 (1994), pp. 2474-2476
[71] Continuous wave operation of InAs/InAsxSb1−x mid-infrared lasers, Appl. Phys. Lett., Volume 66 (1995), pp. 118-120
[72] Pseudomorphic InAsSb multiple quantum well InAsSb lasers emitting at 3.6 μm grown by metal organic chemical vapour deposition, Appl. Phys. Lett., Volume 68 (1996), pp. 1332-1334
[73] Compressively strained multiple quantum well InAsSb lasers emitting at 3.6 μm grown by metal-organic chemical vapor deposition, Appl. Phys. Lett., Volume 70 (1997), pp. 443-445
[74] MBE growth of high power InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 μm, J. Crystal Growth, Volume 175/176 (1997), pp. 825-832
[75] The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3–6 μm) lasers and LED's, IEEE J. Select. Topics Quantum Electron., Volume 3 (1997), pp. 739-748
[76] InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition, Appl. Phys. Lett., Volume 74 (1999), pp. 3438-3440
[77] Mid-infrared In1−xAlxSb/InSb heterostructure diode lasers, Appl. Phys. Lett., Volume 70 (1997), pp. 931-933
[78] Role of internal loss in limiting type-II mid-IR laser performance, J. Appl. Phys., Volume 83 (1998), pp. 2384-2391
[79] InAs/InAs(PSb) quantum-well laser structure for the midwavelength infrared region, Physica E, Volume 14 (2002), pp. 375-384
[80] InAs/AlSb quantum-cascade light-emitting devices in the 3–5 μm wavelength region, Appl. Phys. Lett., Volume 76 (2001), pp. 1029-1031
[81] GaAs- and GaSb-based quantum cascade lasers: the challenge of the new materials, 5th Int. Conf. Mid-Infrared Optoelectronics Materials and Devices (MIOMD-5), Annapolis, MA, 8–11 September 2002
[82] Novel type-II quantum cascade lasers, J. Appl. Phys., Volume 79 (1996), pp. 8197-8203
[83] Type-II and type-I interband cascade lasers, Electron. Lett., Volume 32 (1996), pp. 45-46
[84] Mid-IR interband cascade electroluminescence in type-II quantum wells, Electron. Lett., Volume 32 (1996), pp. 1621-1622
[85] Type-II interband quantum cascade laser at 3.8 μm, Electron. Lett., Volume 33 (1997), pp. 598-599
[86] High power mid-infrared interband cascade laser based on type-II quantum wells, Appl. Phys. Lett., Volume 71 (1997), pp. 2409-2411
[87] Mid-infrared interband cascade lasers with quantum efficiencies >200%, Appl. Phys. Lett., Volume 72 (1998), pp. 2220-2222
[88] Mid infrared interband cascade lasers based on type-II heterostructures, Microelectron. J., Volume 30 (1999), pp. 1043-1056
[89] High efficiency interband cascade lasers with peak power exceeding 4W/facet, Appl. Phys. Lett., Volume 75 (1999), pp. 2362-2364
[90] Interband cascade laser emitting >1 photon per injected electron, IEEE Photonics Technol. Lett., Volume 9 (1997), pp. 1433-1435
[91] Near room temperature mid infrared interband cascade laser, Appl. Phys. Lett., Volume 72 (1998), pp. 2370-2372
[92] et al. Type-II quantum cascade lasers, Proc. SPIE, Volume 3284 (1998), pp. 308-317
[93] Room temperature type-II interband cascade laser, Appl. Phys. Lett., Volume 81 (2002), pp. 397-399
[94] A. Perona, Réalisation par MBE et caractérisation physique de diodes lasers à puits quantiques GaInAsSb/AlGaAsSb émettant vers 2,3 μm, Thesis, Montpellier-II University, Montpellier (F), October 2002
Cité par Sources :
Commentaires - Politique