[Nouvelles perspectives ouvertes par les nouvelles générations de sources neutroniques]
Depuis le début des années cinquante, les progrès cruciaux réalisés dans tous les domaines pour mieux comprendre la matière condensée, reposent essentiellement sur les résultats d'expériences utilisant des faisceaux de neutrons. La diffusion de neutrons est, de manière inhérente, une méthode d'intensité limitée. Après cinquante années de progrès considérables, grâce, surtout, à une amélioration continue des spectromètres, la technique des sources pulsées à spallation arrive à maturité pour ouvrir la voie vers l'obtention de plus de neutrons, à moindre coût et avec une meilleure efficacité en énergie. Une analyse quantitative de la « figure de mérite » des appareils adaptés à une opération sur source pulsée, montre que l'on peut gagner plus de trois ordres de grandeur en intensité dans la prochaine décade, avec l'arrivée des sources à spallation de forte puissance. Les premières étapes sur cette voie, les sources de spallation à pulses courts, de niveau de puissance du MW, SNS aux USA (en cours de mise en service) et le J-Parc au Japon (en construction), seront suivies par la source à spallation européenne à longs pulses, de 5 MW. Les progrès envisageables à plus long terme pourraient permettre de gagner un facteur 10 supplémentaire.
Since the early 1950s the vital multidisciplinary progress in understanding condensed matter is, in a substantial fraction, based on results of neutron scattering experiments. Neutron scattering is an inherently intensity limited method and after 50 years of considerable advance—primarily achieved by improving the scattering instruments—the maturation of the technique of pulsed spallation sources now opens up the way to provide more neutrons with improved cost and energy efficiency. A quantitative analysis of the figure-of-merit of the specialized instruments for pulsed source operation shows that up to 2 orders of magnitude intensity gains can be achieved in the next decade, with the advent of high power spallation sources. The first stations on this road, the MW class short pulse spallation sources SNS in the USA (under commissioning), and J-PARC in Japan (under construction) will be followed by the 5 MW long pulse European Spallation Source (ESS). Further progress, that can be envisaged on the longer term, could amount to as much as another factor of 10 improvement.
Mots-clés : Diffusion neutronique, Sources de neutrons, Sources de neutrons de haute puissance, Sources pulsées, Spallation, Fusion
Ferenc Mezei 1, 2
@article{CRPHYS_2007__8_7-8_909_0, author = {Ferenc Mezei}, title = {New perspectives from new generations of neutron sources}, journal = {Comptes Rendus. Physique}, pages = {909--920}, publisher = {Elsevier}, volume = {8}, number = {7-8}, year = {2007}, doi = {10.1016/j.crhy.2007.10.003}, language = {en}, }
Ferenc Mezei. New perspectives from new generations of neutron sources. Comptes Rendus. Physique, Neutron scattering: a comprehensive tool for condensed matter research, Volume 8 (2007) no. 7-8, pp. 909-920. doi : 10.1016/j.crhy.2007.10.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.003/
[1] Proceedings ICANS XVI (G. Mank et al., eds.), FZJ, Jülich, 2003
[2] F. Mezei, in: Proceedings of ICANS-XIII, PSI-Proceedings 95-02 (1995) 400
[3]
, Clarendon Press, Oxford, 1975 (Cf. Neutron Diffraction)[4] Physica B, 276–278 (2000), p. 181
[5] http://neutron.neutron-eu.net/n_ess/n_ess_documentation (Cf.)
[6] http://www.iucf.indiana.edu/materialscience/LENS10-02Abstract1.php (Cf.)
[7] et al. Science, 315 (2007), p. 1092
[8] J. Neutron Res., 6 (1997), p. 3
[9] F. Mezei, M. Russina, in: SPIE Proc., vol. 4785, 2002, p. 24
[10] http://neutrons.ornl.gov/pubs/publications.shtml (Cf.)
[11] http://www.ill.fr/YellowBookCDrom/index.htm (Cf.)
[12] http://j-parc.jp/MatLife/en/instrumentation/ns3.html (Cf.)
- Purity-improved B4C thin films as neutron convertor on GEM detector using high vacuum magnetron sputtering methods, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2025), p. 170474 | DOI:10.1016/j.nima.2025.170474
- Neutron sources for large scale user facilities: The potential of high current accelerator-driven neutron sources, Progress in Particle and Nuclear Physics, Volume 142 (2025), p. 104163 | DOI:10.1016/j.ppnp.2025.104163
- The GISANS instrument at the HBS, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 1048 (2023), p. 167919 | DOI:10.1016/j.nima.2022.167919
- Design of moderator and collimator for compact neutron radiography systems, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 959 (2020), p. 163535 | DOI:10.1016/j.nima.2020.163535
- Verification of He-3 proportional counters’ fast neutron sensitivity through a comparison with He-4 detectors, The European Physical Journal Plus, Volume 135 (2020) no. 7 | DOI:10.1140/epjp/s13360-020-00600-8
- Fast neutron sensitivity for 3He detectors and comparison with Boron-10 based neutron detectors, EPJ Techniques and Instrumentation, Volume 6 (2019) no. 1 | DOI:10.1140/epjti/s40485-019-0052-x
- New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis, Biochimica et Biophysica Acta (BBA) - General Subjects, Volume 1861 (2017) no. 1, p. 3661 | DOI:10.1016/j.bbagen.2016.05.023
- VESPA: The vibrational spectrometer for the European Spallation Source, Review of Scientific Instruments, Volume 87 (2016) no. 6 | DOI:10.1063/1.4952430
- Basic Definitions and Essential Concepts of Small-Angle Scattering, Small-Angle Scattering from Confined and Interfacial Fluids (2016), p. 1 | DOI:10.1007/978-3-319-01104-2_1
- A Chance, a Threat and a Revival for Neutron Scattering Science in Europe, Neutron News, Volume 26 (2015) no. 3, p. 2 | DOI:10.1080/10448632.2015.1057042
- The Scope of the Imaging Instrument Project ODIN at ESS, Physics Procedia, Volume 69 (2015), p. 18 | DOI:10.1016/j.phpro.2015.07.002
- 3He-free neutron detectors and their applications, The European Physical Journal Plus, Volume 130 (2015) no. 3 | DOI:10.1140/epjp/i2015-15053-1
- The wavelength frame multiplication chopper system for the ESS test beamline at the BER II reactor—A concept study of a fundamental ESS instrument principle, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 705 (2013), p. 74 | DOI:10.1016/j.nima.2012.11.190
- Neutron Scattering of Magnetic Materials, Nanoscale Magnetic Materials and Applications (2009), p. 123 | DOI:10.1007/978-0-387-85600-1_5
- Neutron Applications in Earth, Energy, and Environmental Sciences, Neutron Applications in Earth, Energy and Environmental Sciences (2009), p. 1 | DOI:10.1007/978-0-387-09416-8_1
- Future prospects of imaging at spallation neutron sources, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 604 (2009) no. 3, p. 646 | DOI:10.1016/j.nima.2009.03.075
Cité par 16 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier