Comptes Rendus
IFMIF: the intense neutron source to qualify materials for fusion reactors
[L'IFMIF : source intense de neutrons pour la qualification des matériaux pour réacteur de fusion]
Comptes Rendus. Physique, Volume 9 (2008) no. 3-4, pp. 457-468.

L'installation IFMIF (International Fusion Materials Irradiation Facility) est un élément majeur du développement international de la production d'énergie à partir de la fusion ainsi que de l'accord sur l'approche élargie entre L'Union Européenne et le Japon dans le cadre du projet ITER (International Thermonuclear Experimental Reactor). IFMIF est une source intense de neutrons qui sont produits, avec un pic de flux autour de 14 MeV, par deux faisceaux de deutons de 40 MeV bombardant une cible de lithium. Dans le module de tests à haut flux (20–55 dpa/an à pleine puissance) douze dispositifs à températures diférentes permettront d'irradier environ 1000 échantillons qualifiés. Les analyses sur la base des versions les plus récentes des codes et bibliothèques de données nucléaires ont montré qu'IFMIF offrira des conditions d'irradiation qui conviennent aux matériaux structuraux et fonctionnels. Après une brève description d'IFMIF, on donne une revue des conditions d'irradiation d'intérêt pour les utilisateurs : le spectre de neutrons, la production de gaz de transmutation en fonction du dommage, les spectres d'énergie des PKA (Primary Knocked-on Atoms) et la possibilité de différentes matrices de tests.

The International Fusion Materials Irradiation Facility, IFMIF, has become a major element in international road maps to fusion power and in the Japanese–European ‘ITER Broader Approach’ agreement. IFMIF is an intense neutron source driven by two 40 MeV deuteron beams striking a joint lithium target producing neutrons with a peak around 14 MeV. In the high flux test module (20–55 dpa/full power year) 12 rigs with individual temperatures allow the simultaneous irradiation of about 1000 qualified specimens. Analyses on the basis of advanced codes and nuclear data libraries have shown that IFMIF offers favorable conditions both for structural and functional materials. After a brief description of IFMIF, an overview on the irradiation conditions is given with special emphasis on users' attractiveness, neutronics, gas production to damage ratios, recoil energy spectra, and possible specimen test matrices.

Publié le :
DOI : 10.1016/j.crhy.2007.10.018
Keywords: IFMIF, Neutron source, Irradiation damage, Helium embrittlement, Recoil energy spectra, Neutron spectra, Fusion materials
Mot clés : IFMIF, Source de neutrons, Endommagement par rayonnement, Spectres d'énergie de recul, Spectres de neutrons, Matériaux de fusion

Anton Möslang 1

1 Forschungszentrum Karlsruhe, Institute of Materials Research I, P.O. Box 3640, 76021 Karlsruhe, Germany
@article{CRPHYS_2008__9_3-4_457_0,
     author = {Anton M\"oslang},
     title = {IFMIF: the intense neutron source to qualify materials for fusion reactors},
     journal = {Comptes Rendus. Physique},
     pages = {457--468},
     publisher = {Elsevier},
     volume = {9},
     number = {3-4},
     year = {2008},
     doi = {10.1016/j.crhy.2007.10.018},
     language = {en},
}
TY  - JOUR
AU  - Anton Möslang
TI  - IFMIF: the intense neutron source to qualify materials for fusion reactors
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 457
EP  - 468
VL  - 9
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.10.018
LA  - en
ID  - CRPHYS_2008__9_3-4_457_0
ER  - 
%0 Journal Article
%A Anton Möslang
%T IFMIF: the intense neutron source to qualify materials for fusion reactors
%J Comptes Rendus. Physique
%D 2008
%P 457-468
%V 9
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2007.10.018
%G en
%F CRPHYS_2008__9_3-4_457_0
Anton Möslang. IFMIF: the intense neutron source to qualify materials for fusion reactors. Comptes Rendus. Physique, Volume 9 (2008) no. 3-4, pp. 457-468. doi : 10.1016/j.crhy.2007.10.018. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.018/

[1] K. Lackner; R. Andreani; D. Campbell; M. Gasparotto; D. Maisonnier; M.A. Pick J. Nucl. Mater., 307–311 (2002), p. 10

[2] T. Muroga; M. Gasparotto; S.J. Zinkle Fusion Engrg. Design, 61&62 (2002), p. 13

[3] D. Maisonnier, J. Hayward, “Technological and engineering challenges of fusion” at 2nd IAEA Technical Meeting on First Generation of Fusion Power Plant, Vienna, 20–22 June 2007; Proceedings in press

[4] D. King, Conclusions of the fast track experts meeting, November 2001, pp. 1–5, http://www.fusion.org.uk/research.html

[5] R. Hazeltiner, A plan for the development of fusion energy, March 2003, pp. 1–82, http://fire.pppl.gov/fesac_dev_path_final_rpt.pdf

[6] J.E. Leis, et al., Report on the international fusion irradiation facility, in: IEA Workshop, San Diego, 1989, vol. 1: Evaluation Panel Report

[7] M. Gasparotto, et al., in: European Material Assessment Meeting, Report EFDA-T-RE-2.0, Garching, 2002, pp. 1–66

[8] K. Ehrlich; E.E. Bloom; T. Kondo J. Nucl. Mater., 283–287 (2000), pp. 79-88

[9] K. Ehrlich, et al. (Eds.), Proceedings of the IEA Workshop on Selection of Intense Neutron Sources, KfK Report 5296, May 1994

[10] E.W. Pottmeyer The fusion materials irradiation facility at hanford, J. Nucl. Mater., Volume 85&86 (1979), pp. 463-465

[11] A.L. Trego et al. Fusion materials irradiation test facility – a facility for fusion materials qualification, Nuclear Technology/Fusion, Volume 4 (1983) no. 2, p. 695

[12] T. Kondo et al. Materials development and testing aspects of IFMIF in the conceptual design stage, J. Nucl. Mater., Volume 233–237 (1996), p. 82

[13] IFMIF International Team, IFMIF Comprehensive Design Report, IEA Report, December 2003, http://insdell.tokai-sc.jaea.go.jp/IFMIFHOME/ifmif_home_e.html#IFMIF

[14] A. Möslang; V. Heinzel; H. Matsui; M. Sugimoto The IFMIF test facilities design, Fusion Engrg. Design, Volume 81 (2006), p. 863

[15] F. Arbeiter, V. Heinzel, B. Dolensky, U. Fischer, S. Gordeev, A. Möslang, K.-H. Lang, D. Leichtle, S.P. Simakov, E. Stratmanns, V. Slobodchuk, P. Vladimirov, IFMIF high flux test module design and design validation, in: 24th Symp. on Fusion Technology (SOFT 24), Warszawa, Poland, September 11–15, 2006, submitted for publication to Fusion Engineering and Design

[16] A. Möslang, Development of a reference test matrix for IFMIF test modules, Final Report on the EFDA Task TW4-TTMI-003 D4, January 2006

[17] P. Jung; A. Hishinuma; G.E. Lucas; H. Ullmaier Recommendation of miniaturized techniques for mechanical testing of fusion materials in an intense neutron source, J. Nucl. Mater., Volume 232 (1996), pp. 186-205

[18] G.E. Lucas; G.R. Odette; H. Matsui; A. Möslang; P. Spätig; J. Rensman The role of small specimen test technology in fusion materials development, J. Nucl. Mater., Volume 367–370 (2007), pp. 1549-1556

[19] A. Möslang, R. Lindau (Eds.), Proceedings of the IEA – Technical Workshop on the Target and Test Cell System for an International Fusion Materials Irradiation Facility, Karlsruhe, July 3–6, 1995, FZK Report, FZKA 5633, 1995

[20] S. Gordeev, V. Heinzel, A. Möslang, V. Slobodschuk, New cooling concept for IFMIF medium flux test module. Validation of turbulence models and thermal hydraulic analyses, in: Annual Meeting on Nuclear Technology 2005, German Nuclear Society, May 10–12, 2005, Nürnberg, Germany; Proceedings, pp. 479-482

[21] U. Fischer; Y. Chen; S.P. Simakov; P.P.H. Wilson; P. Vladimirov; F. Wasastjerna Overview of recent progress in IFMIF neutronics, Fusion Engrg. Design, Volume 81 (2006), pp. 1195-1202

[22] P. Vladimirov; A. Möslang Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources, J. Nucl. Mater., Volume 329–333 (2004), pp. 233-237

Cité par Sources :

Commentaires - Politique