[Potentiels interatomiques pour la simulation des effets du dommage d'irradiation dans les métaux]
Ce papier est une revue critique des développements récents dans le domaine des potentiels interatomiques semi-empiriques utilisés pour les simulations de dynamique moléculaire. Une attention particulière est donnée aux exigences et critères que doivent respecter les simulations des effets du dommage d'irradiation dans les métaux. Nous discutons notamment l'adéquation des potentiels à la simulation d'un grand nombre d'atomes, le rôle des excitations électroniques et des pertes d'énergie des électrons ainsi que la contribution de la dynamique des degrés de liberté internes des atomes, par exemple les excitations magnétiques.
We critically review the recent developments in the field of semi-empirical interatomic potentials for molecular dynamics simulations, with particular emphasis on the requirements and criteria associated with the simulations of radiation damage effects in metals. We address a range of issues including the suitability of potentials for large-scale simulations, the role of electronic excitations and electron energy losses, and the part played by the dynamics of internal degrees of freedom of atoms, for example magnetic excitations.
Mots-clés : Irradiation par neutrons, Dommage d'irradiation
Kai Nordlund 1 ; Sergei L. Dudarev 2, 3
@article{CRPHYS_2008__9_3-4_343_0, author = {Kai Nordlund and Sergei L. Dudarev}, title = {Interatomic potentials for simulating radiation damage effects in metals}, journal = {Comptes Rendus. Physique}, pages = {343--352}, publisher = {Elsevier}, volume = {9}, number = {3-4}, year = {2008}, doi = {10.1016/j.crhy.2007.10.012}, language = {en}, }
Kai Nordlund; Sergei L. Dudarev. Interatomic potentials for simulating radiation damage effects in metals. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 343-352. doi : 10.1016/j.crhy.2007.10.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.012/
[1] Rev. Mod. Phys., 61 (1989), p. 689 (For a review, see)
[2] Rep. Prog. Phys., 60 (1997), p. 1447
[3] J. Phys.: Condens. Matter, 18 (2006), p. S447
[4] Computer Simulation of Liquids, Oxford University Press, Oxford, England, 1989
[5] Numerical Recipes in C; The Art of Scientific Computing, Cambridge University Press, New York, 1995
[6] , Solid State Physics, vol. 51, Academic Press, New York, 1998, pp. 281-402
(H. Ehrenfest; F. Spaepen, eds.)[7] Phys. Rev. Lett., 59 (1987), p. 1930 (Erratum)
[8] The Stopping and Range of Ions in Matter, Pergamon, New York, 1985
[9] Nucl. Instrum. Meth. Phys. Res. B, 111 (1996), p. 1
[10] Nucl. Instrum. Meth. Phys. Res. B, 132 (1997), p. 45
[11] Nucl. Instrum. Meth. Phys. Res. B, 243 (2005), p. 43
[12] Nucl. Instrum. Meth. Phys. Res. B, 212 (2003), p. 118
[13] Phys. Rev. E, 57 (1998), p. 7278
[14] Nucl. Instrum. Meth. Phys. Res. B, 259 (2007), p. 853
[15] Phys. Rev. B (Rapid Comm.), 57 (1998), p. 13965
[16] Nucl. Instrum. Meth. Phys. Res. B, 202 (2002), p. 18
[17] Nucl. Instrum. Meth. Phys. Res. B, 239 (2005), p. 331
[18] Mat. Sci. Engr. Rep., 9 (1993), p. 251
[19] Phys. Rev. B, 24 (1981), p. 3037
[20] Phys. Rev. B, 34 (1986), p. 8486
[21] Phys. Rev. B, 32 (1985), p. 3409
[22] Surf. Sci., 310 (1994), p. 425 (and references therein)
[23] Solid State Physics, Saunders College, Philadelphia, 1976
[24] Phil. Mag. A, 50 (1984), p. 45 (Erratum)
[25] Phil. Mag. A, 56 (1987), p. 15
[26] Phys. Rev. B, 48 (1993), p. 22
[27] Phys. Rev. B, 55 (1997), p. 837
[28] Phys. Rev. B, 37 (1988), p. 6991
[29] Phys. Rev. B, 42 (1990), p. 9458
[30] Phys. Rev. B, 65 (2002), p. 195124
[31] J. Appl. Phys., 98 (2005), p. 123520
[32] M. Müller, P. Erhart, K. Albe, Phys. Rev. B (2006), in press
[33] J. Phys.: Condens. Matter, 18 (2006), p. 6585
[34] Europhys. Lett., 26 (1994), p. 583
[35] J. Mater. Res., 3 (1988), p. 471
[36] J. Mater. Res., 4 (1989), p. 1195
[37] Phil. Mag., 83 (2003), p. 3977
[38] Phys. Rev. Lett., 63 (1989), p. 2480
[39] Phys. Rev. B, 54 (1996), p. 6941
[40] J. Phys.: Condens. Matter, 14 (2002), p. 2825
[41] Acta Mater., 51 (2003), p. 5649
[42] J. Appl. Phys., 43 (1972), p. 3293
[43] J. Phys. F: Metal Phys., 15 (1985), p. 19
[44] J. Phys. F: Metal Phys., 13 (1983), p. 2503
[45] Phys. Rev. Lett., 77 (1996), p. 699
[46] J. Nucl. Mater., 351 (2006), p. 28
[47] Phys. Rev. B, 33 (1986), p. 7983 (Erratum)
[48] Phys. Rev. B, 59 (1999), p. 20
[49] J. Phys.: Condens. Matter, 17 (2005), p. 1
[50] Prog. Mater. Sci., 52 (2007), p. 299
[51] Freiburg, Germany, September 18–22, 2006 (P. Gumbsch, ed.), Fraunhofer IRB Verlag (2006), pp. 713-720
[52] Phys. Rev. B, 76 (2007), p. 054107
[53] Phys. Rev. B, 72 (2005), p. 214119
[54] Phys. Rev. Lett., 95 (2005), p. 075702
[55] Interatomic Forces in Condensed Matter, Oxford University Press, Oxford, 2003
[56] J. Phys.: Condens. Matter, 16 (2004), p. S2629
[57] P.W. Ma, C.-H. Woo, S.L. Dudarev, Magnetic Molecular Dynamics Simulation of Spin-Lattice Relaxation in Ferromagnetic Iron, Programme and Abstracts of EUROMAT-2007, Nuremberg, Germany, September 2007
[58] Simulations of the initial stages of blistering in helium implanted tungsten, Physica Scripta T, Volume 108 (2004), p. 95
[59] N. Juslin, K. Nordlund, Pair potential for Fe–He, J. Nucl. Mater. (2007), submitted for publication
[60] Atomic & Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications (R. Smith, ed.), Cambridge University Press, Cambridge, UK, 1997
[61] Mat. Fys. Medd. Kong. Dan. Vid. Selsk., 52 (2006), p. 595
[62] J.F. Ziegler, TRIM-92 computer code, private communication, 1992
[63] http://www.srim.org (SRIM-2003 software package, available online at)
[64] Comput. Mater. Sci., 3 (1995), p. 448
[65] Phys. Rev. B, 52 (1995), p. 15170
[66] Phys. Rev. B, 54 (1996), p. 8527
[67] Phys. Rev. B, 49 (1994), p. 5942
[68] Nucl. Instrum. Meth. Phys. Res. B, 122 (1997), p. 445
[69] Phys. Rev. B, 38 (1988), p. 7118
[70] Phys. Rev. A, 40 (1989), p. 2287
[71] Phys. Rev. B, 44 (1991), p. 44
[72] J. Appl. Phys., 72 (1992), p. 1194
[73] Phys. Rev. B, 47 (1993), p. 14011
[74] J. Appl. Phys., 83 (1998), p. 1238
[75] Philos. Mag. A, 68 (1993), p. 843
[76] Phys. Rev. Lett., 82 (1999), p. 3637
[77] J. Phys.: Condens. Matter, 19 (2007), p. 016207
[78] et al. Thin Solid Films, 504 (2005), p. 121
[79] Philos. Mag. A, 79 (1999), p. 795
[80] J. Chem. Phys., 105 (1996), p. 5999
[81] Properties and Interactions of Atomic Defects in Metals and Alloys (H. Ullmaier, ed.), Landolt–Börnstein, New Series III, vol. 25, Springer, Berlin, 1991, p. 88 (Chapter 2)
[82] Phys. Rev. B (Brief Reports), 58 (1998), p. 2361
[83] Appl. Phys. Lett., 74 (1999), p. 2720
- Cyclophosphamide Loading and Controlled Release in MIL-100(Fe) as an Anti-breast Cancer Carrier: In vivo In vitro Study, Current Drug Delivery, Volume 21 (2024) no. 2, p. 283 | DOI:10.2174/1567201820666230410120437
- Harnessing machine learning for efficient large-scale interatomic potential for sildenafil and pharmaceuticals containing H, C, N, O, and S, Nanoscale, Volume 16 (2024) no. 38, p. 18014 | DOI:10.1039/d4nr00929k
- RETRACTED: Molecular dynamics simulation of the thermal properties of the Cu-water nanofluid on a roughed Platinum surface: Simulation of phase transition in nanofluids, Journal of Molecular Liquids, Volume 327 (2021), p. 114832 | DOI:10.1016/j.molliq.2020.114832
- Two-phase solid/liquid mixture of water/carbon nanotubes at the equilibration phase of atomic structures: Atomic value effects in a microchannel using the molecular dynamics method, Journal of Molecular Liquids, Volume 339 (2021), p. 116820 | DOI:10.1016/j.molliq.2021.116820
- Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches, Computer Methods and Programs in Biomedicine, Volume 185 (2020), p. 105169 | DOI:10.1016/j.cmpb.2019.105169
- Incorporating Electronic Effects in Molecular Dynamics Simulations of Neutron and Ion-Induced Collision Cascades, Handbook of Materials Modeling (2020), p. 2413 | DOI:10.1007/978-3-319-44680-6_135
- Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite, Journal of Computational Electronics, Volume 19 (2020) no. 1, p. 70 | DOI:10.1007/s10825-020-01443-3
- Nanoparticle growth, coalescence, and phase change in the gas-phase by molecular dynamics, Current Opinion in Chemical Engineering, Volume 23 (2019), p. 155 | DOI:10.1016/j.coche.2019.04.001
- Incorporating Electronic Effects in Molecular Dynamics Simulations of Neutron and Ion-Induced Collision Cascades, Handbook of Materials Modeling (2019), p. 1 | DOI:10.1007/978-3-319-50257-1_135-2
- On the transferability of interaction potentials for condensed phases of silicon, Journal of Molecular Liquids, Volume 285 (2019), p. 488 | DOI:10.1016/j.molliq.2019.04.076
- Historical review of computer simulation of radiation effects in materials, Journal of Nuclear Materials, Volume 520 (2019), p. 273 | DOI:10.1016/j.jnucmat.2019.04.028
- Molecular dynamics simulation of displacement cascades in B2 NiAl, Letters on Materials, Volume 9 (2019) no. 2, p. 168 | DOI:10.22226/2410-3535-2019-2-168-172
- Incorporating Electronic Effects in Molecular Dynamics Simulations of Neutron and Ion-Induced Collision Cascades, Handbook of Materials Modeling (2018), p. 1 | DOI:10.1007/978-3-319-50257-1_135-1
- Threshold displacement energy in Ni, Al and B2 NiAl, IOP Conference Series: Materials Science and Engineering, Volume 447 (2018), p. 012004 | DOI:10.1088/1757-899x/447/1/012004
- Primary radiation damage of Fe-10 | DOI:10.1016/j.jnucmat.2018.07.016
- Comparative study of displacement cascades simulated with ‘magnetic’ potentials and Mendelev-type potential in α-Fe, Journal of Nuclear Materials, Volume 487 (2017), p. 167 | DOI:10.1016/j.jnucmat.2017.01.039
- Molecular dynamics study of the thermal expansion coefficient of silicon, Physics Letters A, Volume 380 (2016) no. 48, p. 4039 | DOI:10.1016/j.physleta.2016.08.027
- Comparison of two tungsten–helium interatomic potentials, Journal of Materials Research, Volume 30 (2015) no. 9, p. 1464 | DOI:10.1557/jmr.2014.407
- Cascades in model steels: The effect of cementite (Fe3C) and Cr23C6 particles on short-term crystal damage, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 352 (2015), p. 36 | DOI:10.1016/j.nimb.2014.11.112
- Ion beam irradiation of nanostructures: sputtering, dopant incorporation, and dynamic annealing, Semiconductor Science and Technology, Volume 30 (2015) no. 3, p. 033001 | DOI:10.1088/0268-1242/30/3/033001
- Electron-irradiation-induced reinforcement of reduced graphene oxide papers, Acta Materialia, Volume 61 (2013) no. 17, p. 6466 | DOI:10.1016/j.actamat.2013.07.025
- Variables affecting simulated Be sputtering yields, Journal of Nuclear Materials, Volume 439 (2013) no. 1-3, p. 174 | DOI:10.1016/j.jnucmat.2013.04.036
- Enhanced radiation tolerance in nitride multilayered nanofilms with small period-thicknesses, Applied Physics Letters, Volume 101 (2012) no. 15 | DOI:10.1063/1.4759004
- Atomistic modeling of thermodynamic equilibrium and polymorphism of iron, Journal of Physics: Condensed Matter, Volume 24 (2012) no. 22, p. 225404 | DOI:10.1088/0953-8984/24/22/225404
- Stability and crystal structures of iron carbides: A comparison between the semi-empirical modified embedded atom method and quantum-mechanical DFT calculations, Physical Review B, Volume 85 (2012) no. 5 | DOI:10.1103/physrevb.85.054116
- Molecular dynamics simulations for the prediction of thermal conductivity of bulk silicon and silicon nanowires: Influence of interatomic potentials and boundary conditions, Journal of Applied Physics, Volume 110 (2011) no. 3 | DOI:10.1063/1.3615826
- Fusion power: a challenge for materials science, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 368 (2010) no. 1923, p. 3315 | DOI:10.1098/rsta.2010.0060
Cité par 27 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier