Comptes Rendus
Interatomic potentials for simulating radiation damage effects in metals
[Potentiels interatomiques pour la simulation des effets du dommage d'irradiation dans les métaux]
Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 343-352.

Ce papier est une revue critique des développements récents dans le domaine des potentiels interatomiques semi-empiriques utilisés pour les simulations de dynamique moléculaire. Une attention particulière est donnée aux exigences et critères que doivent respecter les simulations des effets du dommage d'irradiation dans les métaux. Nous discutons notamment l'adéquation des potentiels à la simulation d'un grand nombre d'atomes, le rôle des excitations électroniques et des pertes d'énergie des électrons ainsi que la contribution de la dynamique des degrés de liberté internes des atomes, par exemple les excitations magnétiques.

We critically review the recent developments in the field of semi-empirical interatomic potentials for molecular dynamics simulations, with particular emphasis on the requirements and criteria associated with the simulations of radiation damage effects in metals. We address a range of issues including the suitability of potentials for large-scale simulations, the role of electronic excitations and electron energy losses, and the part played by the dynamics of internal degrees of freedom of atoms, for example magnetic excitations.

Publié le :
DOI : 10.1016/j.crhy.2007.10.012
Keywords: Neutron irradiation, Radiation damage
Mots-clés : Irradiation par neutrons, Dommage d'irradiation

Kai Nordlund 1 ; Sergei L. Dudarev 2, 3

1 Association EURATOM/TEKES, Accelerator Laboratory, P.O. Box 43, FI-00014 University of Helsinki, Finland
2 EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB, UK
3 Department of Physics, Imperial College, Exhibition Road, London SW7 2AZ, UK
@article{CRPHYS_2008__9_3-4_343_0,
     author = {Kai Nordlund and Sergei L. Dudarev},
     title = {Interatomic potentials for simulating radiation damage effects in metals},
     journal = {Comptes Rendus. Physique},
     pages = {343--352},
     publisher = {Elsevier},
     volume = {9},
     number = {3-4},
     year = {2008},
     doi = {10.1016/j.crhy.2007.10.012},
     language = {en},
}
TY  - JOUR
AU  - Kai Nordlund
AU  - Sergei L. Dudarev
TI  - Interatomic potentials for simulating radiation damage effects in metals
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 343
EP  - 352
VL  - 9
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.10.012
LA  - en
ID  - CRPHYS_2008__9_3-4_343_0
ER  - 
%0 Journal Article
%A Kai Nordlund
%A Sergei L. Dudarev
%T Interatomic potentials for simulating radiation damage effects in metals
%J Comptes Rendus. Physique
%D 2008
%P 343-352
%V 9
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2007.10.012
%G en
%F CRPHYS_2008__9_3-4_343_0
Kai Nordlund; Sergei L. Dudarev. Interatomic potentials for simulating radiation damage effects in metals. Comptes Rendus. Physique, Materials subjected to fast neutron irradiation, Volume 9 (2008) no. 3-4, pp. 343-352. doi : 10.1016/j.crhy.2007.10.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.012/

[1] R.O. Jones; O. Gunnarsson Rev. Mod. Phys., 61 (1989), p. 689 (For a review, see)

[2] C.M. Goringe; D.R. Bowler; E. Hernandez Rep. Prog. Phys., 60 (1997), p. 1447

[3] S.L. Dudarev J. Phys.: Condens. Matter, 18 (2006), p. S447

[4] M.P. Allen; D.J. Tildesley Computer Simulation of Liquids, Oxford University Press, Oxford, England, 1989

[5] W.H. Press; S.A. Teukolsky; W.T. Vetterling; B.P. Flannery Numerical Recipes in C; The Art of Scientific Computing, Cambridge University Press, New York, 1995

[6] R.S. Averback; T. Diaz de la Rubia (H. Ehrenfest; F. Spaepen, eds.), Solid State Physics, vol. 51, Academic Press, New York, 1998, pp. 281-402

[7] T. Diaz de la Rubia; R.S. Averback; R. Benedek; W.E. King; T. Diaz de la Rubia; R.S. Averback; R. Benedek; W.E. King Phys. Rev. Lett., 59 (1987), p. 1930 (Erratum)

[8] J.F. Ziegler; J.P. Biersack; U. Littmark The Stopping and Range of Ions in Matter, Pergamon, New York, 1985

[9] P. Haussalo; K. Nordlund; J. Keinonen Nucl. Instrum. Meth. Phys. Res. B, 111 (1996), p. 1

[10] K. Nordlund; N. Runeberg; D. Sundholm Nucl. Instrum. Meth. Phys. Res. B, 132 (1997), p. 45

[11] M.A. Karolewski Nucl. Instrum. Meth. Phys. Res. B, 243 (2005), p. 43

[12] J. Peltola; K. Nordlund; J. Keinonen Nucl. Instrum. Meth. Phys. Res. B, 212 (2003), p. 118

[13] K.M. Beardmore; N. Grønbech-Jensen Phys. Rev. E, 57 (1998), p. 7278

[14] C. Björkas; K. Nordlund Nucl. Instrum. Meth. Phys. Res. B, 259 (2007), p. 853

[15] K. Nordlund; L. Wei; Y. Zhong; R.S. Averback Phys. Rev. B (Rapid Comm.), 57 (1998), p. 13965

[16] V. Belko; M. Posselt; E. Chagarov Nucl. Instrum. Meth. Phys. Res. B, 202 (2002), p. 18

[17] J. Samela; J. Kotakoski; K. Nordlund; J. Keinonen Nucl. Instrum. Meth. Phys. Res. B, 239 (2005), p. 331

[18] M.S. Daw; S.M. Foiles; M.I. Baskes Mat. Sci. Engr. Rep., 9 (1993), p. 251

[19] M.J. Puska; R.M. Nieminen; M. Manninen Phys. Rev. B, 24 (1981), p. 3037

[20] M. Manninen Phys. Rev. B, 34 (1986), p. 8486

[21] S.M. Foiles Phys. Rev. B, 32 (1985), p. 3409

[22] C.L. Kelchner; D.M. Halstead; L.S. Perkins; N.M. Wallace; A.E. DePristo Surf. Sci., 310 (1994), p. 425 (and references therein)

[23] N.W. Ashcroft; N.D. Mermin Solid State Physics, Saunders College, Philadelphia, 1976

[24] M.W. Finnis; J.E. Sinclair; M.W. Finnis; J.E. Sinclair Phil. Mag. A, 50 (1984), p. 45 (Erratum)

[25] G.J. Ackland; R. Thetford Phil. Mag. A, 56 (1987), p. 15

[26] F. Cleri; V. Rosato Phys. Rev. B, 48 (1993), p. 22

[27] G. Mazzone; V. Rosato; M. Pintore; F. Delogu; P. Demontis; G.B. Suffriti Phys. Rev. B, 55 (1997), p. 837

[28] J. Tersoff Phys. Rev. B, 37 (1988), p. 6991

[29] D.W. Brenner; D.W. Brenner Phys. Rev. B, 42 (1990), p. 9458

[30] K. Albe; K. Nordlund; R.S. Averback Phys. Rev. B, 65 (2002), p. 195124

[31] N. Juslin; P. Erhart; P. Träskelin; J. Nord; K.O.E. Henriksson; K. Nordlund; E. Salonen; K. Albe J. Appl. Phys., 98 (2005), p. 123520

[32] M. Müller, P. Erhart, K. Albe, Phys. Rev. B (2006), in press

[33] P. Erhart; N. Juslin; O. Goy; K. Nordlund; R. Muller; K. Albe J. Phys.: Condens. Matter, 18 (2006), p. 6585

[34] F. Ercolessi; J.B. Adams Europhys. Lett., 26 (1994), p. 583

[35] D.J. Oh; R.A. Johnson J. Mater. Res., 3 (1988), p. 471

[36] R.A. Johnson; D.J. Oh J. Mater. Res., 4 (1989), p. 1195

[37] M.I. Mendelev; S. Han; D.J. Srolovitz; G.J. Ackland; D.Y. Sun; M. Asta Phil. Mag., 83 (2003), p. 3977

[38] D.G. Pettifor Phys. Rev. Lett., 63 (1989), p. 2480

[39] W. Xu; J. Moriarty Phys. Rev. B, 54 (1996), p. 6941

[40] J.A. Moriarty; J.F. Belak; R.E. Rudd; P. Söderlind; F.H. Streitz; L.H. Yang J. Phys.: Condens. Matter, 14 (2002), p. 2825

[41] D.G. Pettifor Acta Mater., 51 (2003), p. 5649

[42] D.J. Dever J. Appl. Phys., 43 (1972), p. 3293

[43] H. Hasegawa; M.W. Finnis; D.G. Pettifor J. Phys. F: Metal Phys., 15 (1985), p. 19

[44] N.Q. Lam; L. Dagens; N.V. Doan J. Phys. F: Metal Phys., 13 (1983), p. 2503

[45] K. Nordlund; J. Keinonen; T. Mattila Phys. Rev. Lett., 77 (1996), p. 699

[46] L. Malerba J. Nucl. Mater., 351 (2006), p. 28

[47] S.M. Foiles; M.I. Baskes; M.S. Daw; S.M. Foiles; M.I. Baskes; M.S. Daw Phys. Rev. B, 33 (1986), p. 7983 (Erratum)

[48] K. Nordlund; R.S. Averback Phys. Rev. B, 59 (1999), p. 20

[49] S.L. Dudarev; P.M. Derlet J. Phys.: Condens. Matter, 17 (2005), p. 1

[50] P.M. Derlet; S.L. Dudarev Prog. Mater. Sci., 52 (2007), p. 299

[51] S.L. Dudarev; P.M. Derlet Freiburg, Germany, September 18–22, 2006 (P. Gumbsch, ed.), Fraunhofer IRB Verlag (2006), pp. 713-720

[52] P.M. Derlet; D. Nguyen-Manh; S.L. Dudarev Phys. Rev. B, 76 (2007), p. 054107

[53] P. Olsson; J. Wallenius; C. Domain; K. Nordlund; L. Malerba Phys. Rev. B, 72 (2005), p. 214119

[54] A. Caro; D.A. Crowson; M. Caro Phys. Rev. Lett., 95 (2005), p. 075702

[55] M.W. Finnis Interatomic Forces in Condensed Matter, Oxford University Press, Oxford, 2003

[56] G.J. Ackland; M.I. Mendelev; D.J. Srolovitz; S. Han; A.V. Barashev J. Phys.: Condens. Matter, 16 (2004), p. S2629

[57] P.W. Ma, C.-H. Woo, S.L. Dudarev, Magnetic Molecular Dynamics Simulation of Spin-Lattice Relaxation in Ferromagnetic Iron, Programme and Abstracts of EUROMAT-2007, Nuremberg, Germany, September 2007

[58] K.O.E. Henriksson; K. Nordlund; J. Keinonen; D. Sundholm; M. Patzschke Simulations of the initial stages of blistering in helium implanted tungsten, Physica Scripta T, Volume 108 (2004), p. 95

[59] N. Juslin, K. Nordlund, Pair potential for Fe–He, J. Nucl. Mater. (2007), submitted for publication

[60] Atomic & Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications (R. Smith, ed.), Cambridge University Press, Cambridge, UK, 1997

[61] N. Arista Mat. Fys. Medd. Kong. Dan. Vid. Selsk., 52 (2006), p. 595

[62] J.F. Ziegler, TRIM-92 computer code, private communication, 1992

[63] J.F. Ziegler http://www.srim.org (SRIM-2003 software package, available online at)

[64] K. Nordlund Comput. Mater. Sci., 3 (1995), p. 448

[65] K. Nordlund; J. Keinonen; E. Rauhala; T. Ahlgren Phys. Rev. B, 52 (1995), p. 15170

[66] H. Hausmann; A. Pillukat; P. Ehrhart Phys. Rev. B, 54 (1996), p. 8527

[67] F.C. Wellstood; C. Urbina; J. Clarke Phys. Rev. B, 49 (1994), p. 5942

[68] C. Dufour; E. Paumier; M. Toulemonde Nucl. Instrum. Meth. Phys. Res. B, 122 (1997), p. 445

[69] C.P. Flynn; R.S. Averback Phys. Rev. B, 38 (1988), p. 7118

[70] A. Caro; M. Victoria Phys. Rev. A, 40 (1989), p. 2287

[71] M.W. Finnis; P. Agnew; A.J.E. Foreman Phys. Rev. B, 44 (1991), p. 44

[72] I. Koponen J. Appl. Phys., 72 (1992), p. 1194

[73] I. Koponen Phys. Rev. B, 47 (1993), p. 14011

[74] K. Nordlund; M. Ghaly; R.S. Averback J. Appl. Phys., 83 (1998), p. 1238

[75] I.M. Robertson; D.K. Tappin; M.A. Kirk Philos. Mag. A, 68 (1993), p. 843

[76] A.E. Stuchbery; E. Bezakova Phys. Rev. Lett., 82 (1999), p. 3637

[77] D.M. Duffy; A.M. Rutherford J. Phys.: Condens. Matter, 19 (2007), p. 016207

[78] H.Y. Chan et al. Thin Solid Films, 504 (2005), p. 121

[79] M. Ghaly; K. Nordlund; R.S. Averback Philos. Mag. A, 79 (1999), p. 795

[80] A. Wucher; B.J. Garrison J. Chem. Phys., 105 (1996), p. 5999

[81] P. Ehrhart Properties and Interactions of Atomic Defects in Metals and Alloys (H. Ullmaier, ed.), Landolt–Börnstein, New Series III, vol. 25, Springer, Berlin, 1991, p. 88 (Chapter 2)

[82] Y. Zhong; K. Nordlund; M. Ghaly; R.S. Averback Phys. Rev. B (Brief Reports), 58 (1998), p. 2361

[83] K. Nordlund; F. Gao Appl. Phys. Lett., 74 (1999), p. 2720

  • Shabnam Tohidi; Mehrdad Aghaie-Khafri Cyclophosphamide Loading and Controlled Release in MIL-100(Fe) as an Anti-breast Cancer Carrier: In vivo In vitro Study, Current Drug Delivery, Volume 21 (2024) no. 2, p. 283 | DOI:10.2174/1567201820666230410120437
  • E. Nikidis; N. Kyriakopoulos; R. Tohid; K. Kachrimanis; J. Kioseoglou Harnessing machine learning for efficient large-scale interatomic potential for sildenafil and pharmaceuticals containing H, C, N, O, and S, Nanoscale, Volume 16 (2024) no. 38, p. 18014 | DOI:10.1039/d4nr00929k
  • Nidal H. Abu-Hamdeh; Eydhah Almatrafi; M. Hekmatifar; D. Toghraie; Ali Golmohammadzadeh RETRACTED: Molecular dynamics simulation of the thermal properties of the Cu-water nanofluid on a roughed Platinum surface: Simulation of phase transition in nanofluids, Journal of Molecular Liquids, Volume 327 (2021), p. 114832 | DOI:10.1016/j.molliq.2020.114832
  • Mostafa Naderi; Arash Karimipour Two-phase solid/liquid mixture of water/carbon nanotubes at the equilibration phase of atomic structures: Atomic value effects in a microchannel using the molecular dynamics method, Journal of Molecular Liquids, Volume 339 (2021), p. 116820 | DOI:10.1016/j.molliq.2021.116820
  • Nitasha Adavoodi Jolfaei; Niyusha Adavoodi Jolfaei; Maboud Hekmatifar; Anahita Piranfar; Davood Toghraie; Roozbeh Sabetvand; Sara Rostami Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches, Computer Methods and Programs in Biomedicine, Volume 185 (2020), p. 105169 | DOI:10.1016/j.cmpb.2019.105169
  • Andrea E. Sand Incorporating Electronic Effects in Molecular Dynamics Simulations of Neutron and Ion-Induced Collision Cascades, Handbook of Materials Modeling (2020), p. 2413 | DOI:10.1007/978-3-319-44680-6_135
  • Roozbeh Sabetvand; M. E. Ghazi; Morteza Izadifard Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite, Journal of Computational Electronics, Volume 19 (2020) no. 1, p. 70 | DOI:10.1007/s10825-020-01443-3
  • Eirini Goudeli Nanoparticle growth, coalescence, and phase change in the gas-phase by molecular dynamics, Current Opinion in Chemical Engineering, Volume 23 (2019), p. 155 | DOI:10.1016/j.coche.2019.04.001
  • Andrea E. Sand Incorporating Electronic Effects in Molecular Dynamics Simulations of Neutron and Ion-Induced Collision Cascades, Handbook of Materials Modeling (2019), p. 1 | DOI:10.1007/978-3-319-50257-1_135-2
  • José V. Michelin; Luis G.V. Gonçalves; José P. Rino On the transferability of interaction potentials for condensed phases of silicon, Journal of Molecular Liquids, Volume 285 (2019), p. 488 | DOI:10.1016/j.molliq.2019.04.076
  • K. Nordlund Historical review of computer simulation of radiation effects in materials, Journal of Nuclear Materials, Volume 520 (2019), p. 273 | DOI:10.1016/j.jnucmat.2019.04.028
  • Nguyen Trong Hoang Trung; Hoang Sy Minh Phuong; Mikhail Starostenkov Molecular dynamics simulation of displacement cascades in B2 NiAl, Letters on Materials, Volume 9 (2019) no. 2, p. 168 | DOI:10.22226/2410-3535-2019-2-168-172
  • Andrea E. Sand Incorporating Electronic Effects in Molecular Dynamics Simulations of Neutron and Ion-Induced Collision Cascades, Handbook of Materials Modeling (2018), p. 1 | DOI:10.1007/978-3-319-50257-1_135-1
  • N T H Trung; H S M Phuong; M D Starostenkov; V V Romanenko; V A Popov Threshold displacement energy in Ni, Al and B2 NiAl, IOP Conference Series: Materials Science and Engineering, Volume 447 (2018), p. 012004 | DOI:10.1088/1757-899x/447/1/012004
  • M. Abu-Shams; I. Shabib Primary radiation damage of Fe-10 | DOI:10.1016/j.jnucmat.2018.07.016
  • Chan Gao; Dongfeng Tian; Maosheng Li; Dazhi Qian Comparative study of displacement cascades simulated with ‘magnetic’ potentials and Mendelev-type potential in α-Fe, Journal of Nuclear Materials, Volume 487 (2017), p. 167 | DOI:10.1016/j.jnucmat.2017.01.039
  • Hossein Nejat Pishkenari; Erfan Mohagheghian; Ali Rasouli Molecular dynamics study of the thermal expansion coefficient of silicon, Physics Letters A, Volume 380 (2016) no. 48, p. 4039 | DOI:10.1016/j.physleta.2016.08.027
  • Li-Fang Wang; Xiaolin Shu; Guang-Hong Lu Comparison of two tungsten–helium interatomic potentials, Journal of Materials Research, Volume 30 (2015) no. 9, p. 1464 | DOI:10.1557/jmr.2014.407
  • K.O.E. Henriksson Cascades in model steels: The effect of cementite (Fe3C) and Cr23C6 particles on short-term crystal damage, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 352 (2015), p. 36 | DOI:10.1016/j.nimb.2014.11.112
  • Andreas Johannes; Henry Holland-Moritz; Carsten Ronning Ion beam irradiation of nanostructures: sputtering, dopant incorporation, and dynamic annealing, Semiconductor Science and Technology, Volume 30 (2015) no. 3, p. 033001 | DOI:10.1088/0268-1242/30/3/033001
  • Enze Jin; Jianying He; Kaixuan Sheng; Zhiliang Zhang; Gaoquan Shi; Quanshui Zheng Electron-irradiation-induced reinforcement of reduced graphene oxide papers, Acta Materialia, Volume 61 (2013) no. 17, p. 6466 | DOI:10.1016/j.actamat.2013.07.025
  • C. Björkas; K. Nordlund Variables affecting simulated Be sputtering yields, Journal of Nuclear Materials, Volume 439 (2013) no. 1-3, p. 174 | DOI:10.1016/j.jnucmat.2013.04.036
  • Mengqing Hong; Feng Ren; Hongxiu Zhang; Xiangheng Xiao; Bing Yang; Canxin Tian; Dejun Fu; Yongqiang Wang; Changzhong Jiang Enhanced radiation tolerance in nitride multilayered nanofilms with small period-thicknesses, Applied Physics Letters, Volume 101 (2012) no. 15 | DOI:10.1063/1.4759004
  • Tongsik Lee; Michael I Baskes; Steven M Valone; J D Doll Atomistic modeling of thermodynamic equilibrium and polymorphism of iron, Journal of Physics: Condensed Matter, Volume 24 (2012) no. 22, p. 225404 | DOI:10.1088/0953-8984/24/22/225404
  • C. M. Fang; M. A. van Huis; B. J. Thijsse; H. W. Zandbergen Stability and crystal structures of iron carbides: A comparison between the semi-empirical modified embedded atom method and quantum-mechanical DFT calculations, Physical Review B, Volume 85 (2012) no. 5 | DOI:10.1103/physrevb.85.054116
  • Carolina Abs da Cruz; Konstantinos Termentzidis; Patrice Chantrenne; Xavier Kleber Molecular dynamics simulations for the prediction of thermal conductivity of bulk silicon and silicon nanowires: Influence of interatomic potentials and boundary conditions, Journal of Applied Physics, Volume 110 (2011) no. 3 | DOI:10.1063/1.3615826
  • D. M. Duffy Fusion power: a challenge for materials science, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 368 (2010) no. 1923, p. 3315 | DOI:10.1098/rsta.2010.0060

Cité par 27 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: